geposanui/server.R

121 lines
2.7 KiB
R
Raw Normal View History

2021-06-24 22:38:16 +02:00
library(data.table)
library(DT)
library(shiny)
2021-08-25 12:03:11 +02:00
source("input.R")
2021-08-25 15:01:18 +02:00
source("process.R")
2021-06-24 22:38:16 +02:00
source("scatter_plot.R")
2021-08-25 11:59:27 +02:00
source("util.R")
2021-06-24 22:38:16 +02:00
2021-09-16 00:06:54 +02:00
# Load input data
2021-08-29 13:25:12 +02:00
2021-09-16 00:06:54 +02:00
species <- run_cached("species", retrieve_species)
genes <- run_cached("genes", retrieve_genes)
2021-08-29 13:25:12 +02:00
2021-09-16 00:06:54 +02:00
distances <- run_cached(
"distances",
retrieve_distances,
species[, id],
genes[, id]
)
2021-08-29 13:25:12 +02:00
2021-09-16 00:06:54 +02:00
#' Results computed for all species.
2021-08-29 13:25:12 +02:00
results_all <- run_cached(
"results_all",
process_input,
2021-09-16 00:06:54 +02:00
distances,
species[, id],
genes[, id]
2021-08-29 13:25:12 +02:00
)
2021-09-16 00:06:54 +02:00
#' Results computed for known replicatively aging species.
2021-08-29 13:25:12 +02:00
results_replicative <- run_cached(
"results_replicative",
process_input,
2021-09-16 00:06:54 +02:00
distances,
species[replicative == TRUE, id],
genes[, id]
2021-08-29 13:25:12 +02:00
)
# Add gene information to results for display.
results_all <- merge(
results_all,
2021-09-16 00:06:54 +02:00
genes,
2021-08-29 13:25:12 +02:00
by.x = "gene",
by.y = "id"
)
results_replicative <- merge(
results_replicative,
2021-09-16 00:06:54 +02:00
genes,
2021-08-29 13:25:12 +02:00
by.x = "gene",
by.y = "id"
)
# Order results by cluster length descendingly.
# TODO: Once other methods have been added, this has to be dynamic.
setorder(results_all, -cluster_length)
setorder(results_replicative, -cluster_length)
2021-06-24 22:38:16 +02:00
server <- function(input, output) {
2021-08-29 13:25:12 +02:00
#' This expression applies all user defined filters to the available
#' results.
results <- reactive({
results <- if (input$species == "all") {
results_all
} else {
results_replicative
}
results[
2021-08-26 11:20:50 +02:00
cluster_length >= input$length &
cluster_mean >= input$range[1] * 1000000 &
cluster_mean <= input$range[2] * 1000000
]
})
2021-08-25 15:01:18 +02:00
2021-06-24 22:38:16 +02:00
output$genes <- renderDT({
datatable(
2021-08-29 13:25:12 +02:00
results()[, .(.I, name, chromosome, cluster_length, cluster_mean)],
2021-08-26 12:51:43 +02:00
rownames = FALSE,
2021-08-25 15:01:18 +02:00
colnames = c(
"Rank",
"Gene",
"Chromosome",
"Cluster length",
"Cluster mean"
),
2021-06-24 22:38:16 +02:00
style = "bootstrap"
)
})
2021-08-29 15:29:34 +02:00
output$synposis <- renderText({
results <- results()
sprintf(
"Found %i candidates including %i/%i verified and %i/%i suggested \
TPE-OLD genes.",
results[, .N],
results[verified == TRUE, .N],
2021-09-16 00:06:54 +02:00
genes[verified == TRUE, .N],
2021-08-29 15:29:34 +02:00
results[suggested == TRUE, .N],
2021-09-16 00:06:54 +02:00
genes[suggested == TRUE, .N]
2021-08-29 15:29:34 +02:00
)
})
2021-06-24 22:38:16 +02:00
output$scatter <- renderPlot({
2021-08-29 13:25:12 +02:00
results <- results()
gene_ids <- results[input$genes_rows_selected, gene]
2021-09-16 00:06:54 +02:00
genes <- genes[id %chin% gene_ids]
2021-08-29 13:25:12 +02:00
species <- if (input$species == "all") {
2021-09-16 00:06:54 +02:00
species
2021-08-29 13:25:12 +02:00
} else {
2021-09-16 00:06:54 +02:00
species[replicative == TRUE]
2021-08-29 13:25:12 +02:00
}
2021-09-16 00:06:54 +02:00
scatter_plot(results, species, genes, distances)
2021-06-24 22:38:16 +02:00
})
}