geposanui/clustering.R

60 lines
1.7 KiB
R
Raw Normal View History

2021-08-25 15:01:18 +02:00
library(data.table)
library(rlog)
2021-09-18 23:10:52 +02:00
#' Process genes clustering their distance to telomeres.
2021-08-25 15:01:18 +02:00
#'
2021-09-18 23:10:52 +02:00
#' The return value will be a data.table with the following columns:
#'
#' - `gene` Gene ID of the processed gene.
#' - `cluster_length` Length of the largest cluster.
#' - `cluster_mean` Mean value of the largest cluster.
#' - `cluster_species` List of species contributing to the largest cluster.
2021-08-25 15:01:18 +02:00
#'
2021-09-16 00:06:54 +02:00
#' @param distances Gene distance data to use.
2021-08-29 13:25:12 +02:00
#' @param species_ids IDs of species to include in the analysis.
2021-09-16 00:06:54 +02:00
#' @param gene_ids Genes to include in the computation.
2021-09-18 23:10:52 +02:00
process_clustering <- function(distances, species_ids, gene_ids) {
2021-09-16 00:06:54 +02:00
results <- data.table(gene = gene_ids)
2021-08-25 15:01:18 +02:00
gene_count <- length(gene_ids)
2021-09-18 23:10:52 +02:00
for (i in 1:gene_count) {
2021-08-25 15:01:18 +02:00
gene_id <- gene_ids[i]
2021-09-18 23:10:52 +02:00
log_info(sprintf(
"[%3i%%] Processing gene \"%s\"",
round(i / gene_count * 100),
gene_id
))
2021-08-25 15:01:18 +02:00
2021-09-16 00:06:54 +02:00
data <- distances[
2021-08-25 15:01:18 +02:00
species %chin% species_ids & gene == gene_id,
.(species, distance)
]
2021-09-16 00:06:54 +02:00
if (data[, .N] < 12) {
2021-08-25 15:01:18 +02:00
next
}
2021-09-16 00:06:54 +02:00
clusters <- hclust(dist(data[, distance]))
2021-08-25 15:01:18 +02:00
clusters_cut <- cutree(clusters, h = 1000000)
2021-08-26 14:37:17 +02:00
# Find the largest cluster
cluster_indices <- unique(clusters_cut)
cluster_index <- cluster_indices[
which.max(tabulate(match(clusters_cut, cluster_indices)))
]
2021-09-16 00:06:54 +02:00
cluster <- data[which(clusters_cut == cluster_index)]
2021-08-25 15:01:18 +02:00
results[
gene == gene_id,
`:=`(
cluster_length = cluster[, .N],
cluster_mean = mean(cluster[, distance]),
cluster_species = list(cluster[, species])
)
]
}
results
}