mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
105 lines
3.2 KiB
R
105 lines
3.2 KiB
R
#' Create a new preset.
|
|
#'
|
|
#' A preset is used to specify which methods and inputs should be used for an
|
|
#' analysis. Note that the genes to process should normally include the
|
|
#' reference genes to be able to assess the results later. The genes will be
|
|
#' filtered based on how many species have data for them. Genes which only have
|
|
#' orthologs for less than 25% of the input species will be excluded from the
|
|
#' preset and the analyis.
|
|
#'
|
|
#' Available methods are:
|
|
#'
|
|
#' - `clusteriness` How much the gene distances to the nearest telomere
|
|
#' cluster across species.
|
|
#' - `correlation` The mean correlation of gene distances to the nearest
|
|
#' telomere across species.
|
|
#' - `neural` Assessment by neural network trained on the reference genes.
|
|
#' - `adjacency` Proximity to reference genes.
|
|
#' - `proximity` Mean proximity to telomeres.
|
|
#'
|
|
#' Available optimization targets are:
|
|
#'
|
|
#' - `mean` Mean rank of the reference genes.
|
|
#' - `median` Median rank of the reference genes.
|
|
#' - `max` First rank of the reference genes.
|
|
#' - `min` Last rank of the reference genes.
|
|
#'
|
|
#' @param methods Methods to apply.
|
|
#' @param species_ids IDs of species to include.
|
|
#' @param gene_ids IDs of genes to screen.
|
|
#' @param reference_gene_ids IDs of reference genes to compare to.
|
|
#' @param optimization_target Parameter of the reference genes that the ranking
|
|
#' should be optimized for.
|
|
#'
|
|
#' @return The preset to use with [analyze()].
|
|
#'
|
|
#' @export
|
|
preset <- function(methods = c(
|
|
"clusteriness",
|
|
"correlation",
|
|
"neural",
|
|
"adjacency",
|
|
"proximity"
|
|
),
|
|
species_ids = NULL,
|
|
gene_ids = NULL,
|
|
reference_gene_ids = NULL,
|
|
optimization_target = "mean_rank") {
|
|
# Count included species per gene.
|
|
genes_n_species <- geposan::distances[
|
|
species %chin% species_ids,
|
|
.(n_species = .N),
|
|
by = "gene"
|
|
]
|
|
|
|
# Filter out genes with less than 25% existing orthologs.
|
|
gene_ids_filtered <- genes_n_species[
|
|
n_species >= 0.25 * length(species_ids),
|
|
gene
|
|
]
|
|
|
|
# The included data gets sorted to be able to produce predictable hashes
|
|
# for the object later.
|
|
structure(
|
|
list(
|
|
methods = sort(methods),
|
|
species_ids = sort(species_ids),
|
|
gene_ids = sort(gene_ids_filtered),
|
|
reference_gene_ids = sort(reference_gene_ids),
|
|
optimization_target = optimization_target
|
|
),
|
|
class = "geposan_preset"
|
|
)
|
|
}
|
|
|
|
#' S3 method to print a preset object.
|
|
#'
|
|
#' @param x The preset to print.
|
|
#' @param ... Other parameters.
|
|
#'
|
|
#' @seealso [preset()]
|
|
#'
|
|
#' @export
|
|
print.geposan_preset <- function(x, ...) {
|
|
cat("geposan preset:")
|
|
cat("\n Included methods: ")
|
|
cat(x$methods, sep = ", ")
|
|
|
|
cat(sprintf(
|
|
"\n Input data: %i species, %i genes",
|
|
length(x$species_ids),
|
|
length(x$gene_ids)
|
|
))
|
|
|
|
cat(sprintf(
|
|
"\n Comparison data: %i reference genes",
|
|
length(x$reference_gene_ids)
|
|
))
|
|
|
|
cat(sprintf(
|
|
"\n Optimization target: %s\n",
|
|
x$optimization_target
|
|
))
|
|
|
|
invisible(x)
|
|
}
|