geposan/R/clusteriness.R

75 lines
2.2 KiB
R

# Perform a cluster analysis.
#
# This function will cluster the data using `hclust` and `cutree` (with the
# specified height). Every cluster with at least two members qualifies for
# further analysis. Clusters are then ranked based on their size in relation
# to the number of values. The return value is a final score between zero and
# one. Lower ranking clusters contribute less to this score.
clusteriness_priv <- function(data, height = 1000000) {
n <- length(data)
# Return a score of 0.0 if there is just one or no value at all.
if (n < 2) {
return(0.0)
}
# Cluster the data and compute the cluster sizes.
tree <- stats::hclust(stats::dist(data))
clusters <- stats::cutree(tree, h = height)
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
# Compute the "clusteriness" score.
score <- 0.0
for (i in seq_along(cluster_sizes)) {
cluster_size <- cluster_sizes[i]
if (cluster_size >= 2) {
cluster_score <- cluster_size / n
score <- score + cluster_score / i
}
}
score
}
# Process genes clustering their distance to telomeres.
clusteriness <- function(preset, use_positions = FALSE, progress = NULL) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
cached("clusteriness", c(species_ids, gene_ids, use_positions), {
results <- data.table(gene = gene_ids)
# Prefilter the input data by species.
distances <- geposan::distances[species %chin% species_ids]
# Add an index for quickly accessing data per gene.
setkey(distances, gene)
genes_done <- 0
genes_total <- length(gene_ids)
# Perform the cluster analysis for one gene.
compute <- function(gene_id) {
data <- if (use_positions) {
distances[gene_id, position]
} else {
distances[gene_id, distance]
}
score <- clusteriness_priv(data)
if (!is.null(progress)) {
genes_done <<- genes_done + 1
progress(genes_done / genes_total)
}
score
}
results[, score := compute(gene), by = 1:nrow(results)]
})
}