mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
54 lines
1.6 KiB
R
54 lines
1.6 KiB
R
#' Score the distance of genes to the telomeres across species.
|
|
#'
|
|
#' A score will be given to each gene such that 0.0 corresponds to the maximal
|
|
#' distance across all genes and 1.0 corresponds to a distance of 0.
|
|
#'
|
|
#' @param id Unique ID for the method and its results.
|
|
#' @param name Human readable name for the method.
|
|
#' @param description Method description.
|
|
#' @param summarize A function for combining the different proximities into one
|
|
#' metric. By default, [stats::median()] is used. Other suggested options
|
|
#' include [min()] and [mean()].
|
|
#'
|
|
#' @return An object of class `geposan_method`.
|
|
#'
|
|
#' @export
|
|
proximity <- function(id = "proximity",
|
|
name = "Proximity",
|
|
description = "Proximity to telomeres",
|
|
summarize = stats::median) {
|
|
method(
|
|
id = id,
|
|
name = name,
|
|
description = description,
|
|
function(preset, progress) {
|
|
species_ids <- preset$species_ids
|
|
gene_ids <- preset$gene_ids
|
|
|
|
cached("proximity", c(species_ids, gene_ids), {
|
|
# Prefilter distances by species and gene.
|
|
data <- geposan::distances[
|
|
species %chin% preset$species_ids &
|
|
gene %chin% preset$gene_ids
|
|
]
|
|
|
|
# Compute the score as described above.
|
|
data <- data[,
|
|
.(combined_distance = as.double(summarize(distance))),
|
|
by = "gene"
|
|
]
|
|
|
|
# Normalize scores.
|
|
data[, score := 1 - combined_distance / max(combined_distance)]
|
|
|
|
progress(1.0)
|
|
|
|
result(
|
|
method = "proximity",
|
|
scores = data[, .(gene, score)],
|
|
details = list(data = data)
|
|
)
|
|
})
|
|
}
|
|
)
|
|
}
|