geposan/R/preset.R

106 lines
3.2 KiB
R

#' Create a new preset.
#'
#' A preset is used to specify which methods and inputs should be used for an
#' analysis. Note that the genes to process should normally include the
#' reference genes to be able to assess the results later. The genes will be
#' filtered based on how many species have data for them. Genes which only have
#' orthologs for less than 25% of the input species will be excluded from the
#' preset and the analyis.
#'
#' Available methods are:
#'
#' - `clusteriness` How much the gene distances to the nearest telomere
#' cluster across species.
#' - `correlation` The mean correlation of gene distances to the nearest
#' telomere across species.
#' - `neural` Assessment by neural network trained on the reference genes.
#' - `adjacency` Proximity to reference genes.
#' - `proximity` Mean proximity to telomeres.
#'
#' Available optimization targets are:
#'
#' - `mean` Mean rank of the reference genes.
#' - `median` Median rank of the reference genes.
#' - `max` First rank of the reference genes.
#' - `min` Last rank of the reference genes.
#'
#' @param methods Methods to apply.
#' @param species_ids IDs of species to include.
#' @param gene_ids IDs of genes to screen.
#' @param reference_gene_ids IDs of reference genes to compare to.
#' @param optimization_target Parameter of the reference genes that the ranking
#' should be optimized for.
#'
#' @return The preset to use with [analyze()].
#'
#' @export
preset <- function(methods = c(
"clusteriness",
"correlation",
"neural",
"adjacency",
"proximity"
),
species_ids = NULL,
gene_ids = NULL,
reference_gene_ids = NULL,
optimization_target = "mean_rank") {
# Count included species per gene.
genes_n_species <- geposan::distances[
species %chin% species_ids,
.(n_species = .N),
by = "gene"
]
# Filter out genes with less than 25% existing orthologs.
gene_ids_filtered <- genes_n_species[
gene %chin% gene_ids &
n_species >= 0.25 * length(species_ids),
gene
]
# The included data gets sorted to be able to produce predictable hashes
# for the object later.
structure(
list(
methods = sort(methods),
species_ids = sort(species_ids),
gene_ids = sort(gene_ids_filtered),
reference_gene_ids = sort(reference_gene_ids),
optimization_target = optimization_target
),
class = "geposan_preset"
)
}
#' S3 method to print a preset object.
#'
#' @param x The preset to print.
#' @param ... Other parameters.
#'
#' @seealso [preset()]
#'
#' @export
print.geposan_preset <- function(x, ...) {
cat("geposan preset:")
cat("\n Included methods: ")
cat(x$methods, sep = ", ")
cat(sprintf(
"\n Input data: %i species, %i genes",
length(x$species_ids),
length(x$gene_ids)
))
cat(sprintf(
"\n Comparison data: %i reference genes",
length(x$reference_gene_ids)
))
cat(sprintf(
"\n Optimization target: %s\n",
x$optimization_target
))
invisible(x)
}