# Perform a cluster analysis. # # This function will cluster the data using `hclust` and `cutree` (with the # specified height). Every cluster with at least two members qualifies for # further analysis. Clusters are then ranked based on their size in relation # to the number of values. The return value is a final score between zero and # one. Lower ranking clusters contribute less to this score. clusteriness_priv <- function(data, height = 1000000) { n <- length(data) # Return a score of 0.0 if there is just one or no value at all. if (n < 2) { return(0.0) } # Cluster the data and compute the cluster sizes. tree <- stats::hclust(stats::dist(data)) clusters <- stats::cutree(tree, h = height) cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE) # Compute the "clusteriness" score. score <- 0.0 for (i in seq_along(cluster_sizes)) { cluster_size <- cluster_sizes[i] if (cluster_size >= 2) { cluster_score <- cluster_size / n score <- score + cluster_score / i } } score } # Process genes clustering their distance to telomeres. clusteriness <- function(preset, progress = NULL) { species_ids <- preset$species_ids gene_ids <- preset$gene_ids cached("clusteriness", c(species_ids, gene_ids), { results <- data.table(gene = gene_ids) # Prefilter the input data by species. distances <- geposan::distances[species %chin% species_ids] # Add an index for quickly accessing data per gene. setkey(distances, gene) genes_done <- 0 genes_total <- length(gene_ids) # Perform the cluster analysis for one gene. compute <- function(gene_id) { data <- distances[gene_id, distance] score <- clusteriness_priv(data) if (!is.null(progress)) { genes_done <<- genes_done + 1 progress(genes_done / genes_total) } score } results[, score := compute(gene), by = 1:nrow(results)] }) }