#' Perform a cluster analysis. #' #' This function will cluster the data using [stats::hclust()] and #' [stats::cutree()]. Every cluster with at least two members qualifies for #' further analysis. Clusters are then ranked based on their size in relation #' to the total number of values. The return value is a final score between #' 0.0 and 1.0. Lower ranking clusters contribute less to this score. #' #' @param data The values that should be scored. #' @param span The maximum span of values considered to be in one cluster. #' @param weight The weight that will be given to the next largest cluster in #' relation to the previous one. For example, if `weight` is 0.7 (the #' default), the first cluster will weigh 1.0, the second 0.7, the third 0.49 #' etc. clusteriness <- function(data, span = 1000000, weight = 0.7) { n <- length(data) # Return a score of 0.0 if there is just one or no value at all. if (n < 2) { return(0.0) } # Cluster the data and compute the cluster sizes. tree <- stats::hclust(stats::dist(data)) clusters <- stats::cutree(tree, h = span) cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE) # Compute the "clusteriness" score. score <- 0.0 for (i in seq_along(cluster_sizes)) { cluster_size <- cluster_sizes[i] if (cluster_size >= 2) { cluster_score <- cluster_size / n score <- score + weight^(i - 1) * cluster_score } } score } #' Process genes clustering their distance to telomeres. #' #' The result will be cached and can be reused for different presets, because #' it is independent of the reference genes in use. #' #' @return An object of class `geposan_method`. #' #' @seealso [clusteriness()] #' #' @export clustering <- function() { method( id = "clustering", name = "Clustering", description = "Clustering of genes", function(preset, progress) { species_ids <- preset$species_ids gene_ids <- preset$gene_ids cached("clustering", c(species_ids, gene_ids), { scores <- data.table(gene = gene_ids) # Prefilter the input data by species. distances <- geposan::distances[species %chin% species_ids] genes_done <- 0 genes_total <- length(gene_ids) # Perform the cluster analysis for one gene. compute <- function(gene_id) { data <- distances[gene == gene_id, distance] score <- clusteriness(data) genes_done <<- genes_done + 1 progress(genes_done / genes_total) score } scores[, score := compute(gene), by = gene] result( method = "clustering", scores = scores ) }) } ) }