# Compute the mean correlation coefficient comparing gene distances with a set # of reference genes. correlation <- function(distances, preset, progress = NULL) { results <- data.table(gene = preset$gene_ids) reference_gene_ids <- preset$reference_gene_ids reference_count <- length(reference_gene_ids) # Prefilter distances by species. distances <- distances[species %chin% preset$species_ids] # Add an index for quickly accessing data per gene. setkey(distances, gene) # Prepare the reference genes' data. reference_distances <- distances[gene %chin% reference_gene_ids] genes_done <- 0 genes_total <- length(preset$gene_ids) # Perform the correlation for one gene. compute <- function(gene_id) { gene_distances <- distances[gene_id] gene_species_count <- nrow(gene_distances) # Return a score of 0.0 if there is just one or no value at all. if (gene_species_count <= 1) { return(0.0) } # Buffer for the sum of correlation coefficients. correlation_sum <- 0 # Correlate with all reference genes but not with the gene itself. for (reference_gene_id in reference_gene_ids[reference_gene_ids != gene_id]) { data <- merge( gene_distances, reference_distances[reference_gene_id], by = "species" ) # Skip this reference gene, if there are not enough value pairs. # This will lessen the final score, because it effectively # represents a correlation coefficient of 0.0. if (nrow(data) <= 1) { next } # Order data by the reference gene's distance to get a monotonic # relation. setorder(data, distance.y) correlation_sum <- correlation_sum + abs(stats::cor( data[, distance.x], data[, distance.y], method = "spearman" )) } # Compute the score as the mean correlation coefficient. score <- correlation_sum / reference_count if (!is.null(progress)) { genes_done <<- genes_done + 1 progress(genes_done / genes_total) } score } results[, score := compute(gene), by = 1:nrow(results)] }