#' Find the densest value in the data. #' #' This function assumes that data represents a continuous variable and finds #' a single value with the highest estimated density. This can be used to #' estimate the mode of the data. If there is only one value that value is #' returned. If multiple density maxima with the same density exist, their mean #' is returned. #' #' @param data The input data. #' #' @return The densest value of data. #' #' @export densest <- function(data) { as.numeric(if (length(data) <= 0) { NULL } else if (length(data) == 1) { data } else { density <- stats::density(data) mean(density$x[density$y == max(density$y)]) }) } #' Score genes based on their proximity to the reference genes. #' #' @param estimate A function that will be used to summarize the distance #' values for each gene. See [densest()] for the default implementation. #' #' @return An object of class `geposan_method`. #' #' @export adjacency <- function(estimate = densest) { method( id = "adjacency", name = "Adjacency", description = "Adjacency to reference genes", function(preset, progress) { species_ids <- preset$species_ids gene_ids <- preset$gene_ids reference_gene_ids <- preset$reference_gene_ids cached( "adjacency", c(species_ids, gene_ids, reference_gene_ids, estimate), { # nolint # Filter distances by species and gene and summarize each # gene's distance values using the estimation function. data <- geposan::distances[ species %chin% species_ids & gene %chin% gene_ids, .(distance = estimate(distance)), by = gene ] # Compute the absolute value of the difference between the # estimated distances of each gene to the reference genes. compute_difference <- function(distance, comparison_ids) { reference_distance <- data[ gene %chin% comparison_ids, mean(distance) ] abs(distance - reference_distance) } # Compute the differences to the reference genes. data[ !gene %chin% reference_gene_ids, difference := compute_difference( distance, reference_gene_ids ) ] progress(0.5) # Exclude the reference gene itself when computing its # difference. data[ gene %chin% reference_gene_ids, difference := compute_difference( distance, reference_gene_ids[reference_gene_ids != gene] ), by = gene ] # Compute the final score by normalizing the difference. data[, score := 1 - difference / max(difference)] progress(1.0) result( method = "adjacency", scores = data[, .(gene, score)], details = list(data = data) ) } ) } ) }