#' Base color for the plots. #' @noRd base_color <- function() "#1964bf" #' Transparent version of the base color. #' @noRd base_color_transparent <- function() "#1964bf80" #' Color palette for gene sets. #' @noRd gene_set_color <- function(index) { c("#FF7F00", "#4DAF4A", "#984EA3")[index] } #' Plot gene positions. #' #' This function requires the package `plotly`. #' #' @param species_ids IDs of species to show in the plot. #' @param gene_sets A list of gene sets (containing vectors of gene IDs) that #' will be highlighted in the plot. The names will be used as labels. #' @param reference_gene_ids Optionally, a set of reference genes that will be #' used to reorder the species. #' #' @export plot_positions <- function(species_ids, gene_sets, reference_gene_ids = NULL) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } # Prefilter data by species. data <- geposan::distances[species %chin% species_ids] species_max_distance <- data[, .(max_distance = max(distance)), by = species ] # Prefilter species. species <- geposan::species[id %chin% species_ids] # Sort species if reference genes have been provided. if (!is.null(reference_gene_ids)) { species_median_distance <- data[ gene %chin% reference_gene_ids, .(median_distance = as.numeric(stats::median(distance))), by = species ] species <- merge( species, species_median_distance, by.x = "id", by.y = "species", all.x = TRUE ) setorder(species, median_distance) } plot <- plotly::plot_ly() |> plotly::layout( xaxis = list(title = "Distance to telomeres [Bp]"), yaxis = list( title = "Species", type = "category", categoryorder = "array", categoryarray = species$id, tickmode = "array", tickvals = species$id, ticktext = species$name ), bargap = 0.9 ) |> plotly::add_bars( data = species_max_distance, x = ~max_distance, y = ~species, name = "All genes", marker = list(color = base_color()) ) if (length(gene_sets) > 0) { # Include gene information which will be used for labeling gene_set_data <- merge( data[gene %chin% unlist(gene_sets)], geposan::genes, by.x = "gene", by.y = "id" ) index <- 1 for (gene_set_name in names(gene_sets)) { gene_set <- gene_sets[[gene_set_name]] plot <- plot |> plotly::add_markers( data = gene_set_data[gene %chin% gene_set], x = ~distance, y = ~species, name = gene_set_name, text = ~ glue::glue( "{name}
", "{round(distance / 1000000, digits = 2)} MBp" ), hoverinfo = "text", marker = list( size = 5, color = gene_set_color(index) ) ) index <- index + 1 } } plot } #' Plot a side-by-side comparison of multiple rankings. #' #' Each ranking's scores will be shown as a vertical violin plot without any #' additional markings. The gene sets will be shown as markers on top of the #' density visualization. #' #' This function requires the package `plotly`. #' #' @param rankings A named list of rankings to display. The names will be shown #' as labels in the plot. #' @param gene_sets A named list of vectors of gene IDs to highlight. The names #' will be used to distinguish the sets and in the legend. #' #' @export plot_rankings <- function(rankings, gene_sets) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } plot <- plotly::plot_ly() |> plotly::layout( xaxis = list(tickvals = names(rankings)), yaxis = list(title = "Score") ) is_first <- TRUE for (ranking_name in names(rankings)) { ranking <- rankings[[ranking_name]] plot <- plot |> plotly::add_trace( data = ranking, x = ranking_name, y = ~score, name = "All genes", type = "violin", spanmode = "hard", points = FALSE, showlegend = is_first, hoverinfo = "skip", line = list(color = base_color()), fillcolor = base_color_transparent() ) if (length(gene_sets) > 0) { gene_set_data <- merge( ranking[gene %chin% unlist(gene_sets)], geposan::genes, by.x = "gene", by.y = "id" ) index <- 1 for (gene_set_name in names(gene_sets)) { gene_set <- gene_sets[[gene_set_name]] plot <- plot |> plotly::add_markers( data = gene_set_data[gene %chin% gene_set], x = ranking_name, y = ~score, name = gene_set_name, text = ~ glue::glue( "{name}
", "Score: {round(score, digits = 2)}
", "Rank: {rank}
", "Percentile: {round(percentile * 100, digits = 2)}%" ), hoverinfo = "text", showlegend = is_first, marker = list( size = 10, color = gene_set_color(index) ) ) index <- index + 1 } } is_first <- FALSE } plot } #' Plot a ranking as a scatter plot of scores. #' #' This function requires the package `plotly`. #' #' @param ranking The ranking to visualize. #' @param gene_sets A named list of gene sets (containing vectors of gene IDs) #' that will be highlighted in the plot. The names will be used in the legend. #' @param max_rank The maximum rank of included genes. All genes that are ranked #' lower will appear greyed out. #' #' @seealso ranking() #' #' @export plot_scores <- function(ranking, gene_sets = NULL, max_rank = NULL) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } # To speed up rendering, don't show every single gene. n_ranks <- nrow(ranking) sample_ranking <- ranking[seq(1, n_ranks, 5)] plot <- plotly::plot_ly() |> plotly::add_lines( data = sample_ranking, x = ~percentile, y = ~score, name = "All genes", hoverinfo = "skip", line = list(width = 4, color = base_color()) ) |> plotly::layout( xaxis = list( title = "Percentile", tickformat = ".0%" ), yaxis = list(title = "Score") ) if (length(gene_sets) > 0) { # Include gene information which will be used for labeling gene_set_data <- merge( ranking[gene %chin% unlist(gene_sets)], geposan::genes, by.x = "gene", by.y = "id" ) index <- 1 for (gene_set_name in names(gene_sets)) { gene_set <- gene_sets[[gene_set_name]] plot <- plot |> plotly::add_markers( data = gene_set_data[gene %chin% gene_set], x = ~percentile, y = ~score, name = gene_set_name, text = ~ glue::glue( "{name}
", "Score: {round(score, digits = 2)}
", "Rank: {rank}
", "Percentile: {round(percentile * 100, digits = 2)}%" ), hoverinfo = "text", marker = list( size = 10, color = gene_set_color(index) ) ) index <- index + 1 } } if (!is.null(max_rank)) { first_not_included_rank <- max_rank + 1 last_rank <- ranking[, .N] if (first_not_included_rank <= last_rank) { plot <- plot |> plotly::layout( shapes = list( type = "rect", fillcolor = "black", opacity = 0.1, x0 = 1 - first_not_included_rank / n_ranks, x1 = 1 - last_rank / n_ranks, y0 = 0.0, y1 = 1.0 ) ) } } plot } #' Visualize a ranking by comparing gene sets in a boxplot. #' #' This function requires the package `plotly`. #' #' @param ranking The ranking to visualize. #' @param gene_sets A named list of gene sets (containing vectors of gene IDs) #' that will be shown as separate boxes. The names will be used as labels. #' #' @seealso ranking() #' #' @export plot_boxplot <- function(ranking, gene_sets = NULL) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } plot <- plotly::plot_ly() |> plotly::add_boxplot( data = ranking, x = "All genes", y = ~score, name = "All genes", showlegend = FALSE, line = list(color = base_color()) ) |> plotly::layout( xaxis = list(tickvals = c("All genes", names(gene_sets))), yaxis = list(title = "Score") ) if (length(gene_sets) > 0) { index <- 1 for (gene_set_name in names(gene_sets)) { gene_set <- gene_sets[[gene_set_name]] plot <- plot |> plotly::add_boxplot( data = ranking[gene %chin% gene_set], x = gene_set_name, y = ~score, name = gene_set_name, showlegend = FALSE, line = list(color = gene_set_color(index)) ) index <- index + 1 } } plot } #' Show the distribution of scores across chromosomes. #' #' This function requires the package `plotly`. #' #' @param ranking The ranking to visualize. #' #' @seealso ranking() #' #' @export plot_chromosomes <- function(ranking) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } data <- merge(ranking, geposan::genes, by.x = "gene", by.y = "id") data <- data[, .(score = mean(score)), by = "chromosome"] # Get an orderable integer from a chromosome name. chromosome_index <- function(chromosome) { index <- suppressWarnings(as.integer(chromosome)) ifelse( !is.na(index), index, ifelse( chromosome == "X", 998, 999 ) ) } data[, index := chromosome_index(chromosome)] setorder(data, "index") plotly::plot_ly( data = data, x = ~chromosome, y = ~score, type = "bar", marker = list(color = base_color()) ) |> plotly::layout( xaxis = list( title = "Chromosome", categoryorder = "array", categoryarray = ~chromosome ), yaxis = list(title = "Mean score") ) } #' Plot scores in relation to chromosomal position of genes. #' #' @param ranking The ranking to visualize. #' @param chromosome_name The chromosome to visualize. If this is `NULL` all, #' chromosomes will be included and the x-axis will show distances instead of #' positions. #' @param gene_sets Named list of vectors of genes to highlight. The list names #' will be used as labels. #' #' @return A `plotly` figure. #' @seealso ranking() #' #' @export plot_scores_by_position <- function(ranking, chromosome_name = NULL, gene_sets = NULL) { if (!requireNamespace("plotly", quietly = TRUE)) { stop("Please install \"plotly\" to use this function.") } distance_data <- if (!is.null(chromosome_name)) { chromosome_name_ <- chromosome_name geposan::distances[ species == "hsapiens" & chromosome_name == chromosome_name_ ] } else { geposan::distances[species == "hsapiens"] } data <- merge(ranking, distance_data, by = "gene") data <- merge( data, geposan::genes, by.x = "gene", by.y = "id" ) data[, `:=`(gene_set = "All genes", color = base_color())] index <- 1 for (gene_set_name in names(gene_sets)) { gene_set_genes <- gene_sets[[gene_set_name]] data[ gene %chin% gene_set_genes, `:=`( gene_set = gene_set_name, color = gene_set_color(index) ) ] index <- index + 1 } # Use distances instead of positions in case all chromosomes are included. if (is.null(chromosome_name)) { data[, x := distance] } else { data[, x := start_position] } plotly::plot_ly() |> plotly::add_markers( data = data, x = ~x, y = ~score, name = ~gene_set, text = ~ glue::glue( "{name}
", if (is.null(chromosome_name)) "Distance: " else "Position: ", "{round(x / 1000000, digits = 2)} MBp
", "Score: {round(score, digits = 2)}
", "Rank: {rank}
", "Percentile: {round(percentile * 100, digits = 2)}%" ), hoverinfo = "text", ) |> plotly::layout( xaxis = list(title = if (is.null(chromosome_name)) { "Distance (Bp)" } else { "Position (Bp)" }), yaxis = list(title = "Score") ) }