Restructure classes and their responsibilities

This commit is contained in:
Elias Projahn 2021-12-16 13:01:44 +01:00
parent 01ec301d6d
commit e2b93babe5
27 changed files with 974 additions and 634 deletions

View file

@ -5,46 +5,22 @@
#' reference genes to be able to assess the results later. The genes will be
#' filtered based on how many species have data for them. Genes which only have
#' orthologs for less than 25% of the input species will be excluded from the
#' preset and the analyis.
#' preset and the analyis. See the different method functions for the available
#' methods: [clustering()], [correlation()], [neural()], [adjacency()] and
#' [proximity()].
#'
#' Available methods are:
#'
#' - `clusteriness` How much the gene distances to the nearest telomere
#' cluster across species.
#' - `correlation` The mean correlation of gene distances to the nearest
#' telomere across species.
#' - `neural` Assessment by neural network trained on the reference genes.
#' - `adjacency` Proximity to reference genes.
#' - `proximity` Mean proximity to telomeres.
#'
#' Available optimization targets are:
#'
#' - `mean` Mean rank of the reference genes.
#' - `median` Median rank of the reference genes.
#' - `max` First rank of the reference genes.
#' - `min` Last rank of the reference genes.
#'
#' @param methods Methods to apply.
#' @param methods List of methods to apply.
#' @param species_ids IDs of species to include.
#' @param gene_ids IDs of genes to screen.
#' @param reference_gene_ids IDs of reference genes to compare to.
#' @param optimization_target Parameter of the reference genes that the ranking
#' should be optimized for.
#'
#' @return The preset to use with [analyze()].
#'
#' @export
preset <- function(methods = c(
"clusteriness",
"correlation",
"neural",
"adjacency",
"proximity"
),
species_ids = NULL,
gene_ids = NULL,
reference_gene_ids = NULL,
optimization_target = "mean_rank") {
preset <- function(methods = all_methods(),
species_ids = geposan::species$id,
gene_ids = geposan::genes$id,
reference_gene_ids) {
# Count included species per gene.
genes_n_species <- geposan::distances[
species %chin% species_ids,
@ -63,11 +39,10 @@ preset <- function(methods = c(
# for the object later.
structure(
list(
methods = sort(methods),
methods = methods,
species_ids = sort(species_ids),
gene_ids = sort(gene_ids_filtered),
reference_gene_ids = sort(reference_gene_ids),
optimization_target = optimization_target
reference_gene_ids = sort(reference_gene_ids)
),
class = "geposan_preset"
)
@ -82,25 +57,20 @@ preset <- function(methods = c(
#'
#' @export
print.geposan_preset <- function(x, ...) {
cat("geposan preset:")
cat("\n Included methods: ")
cat(x$methods, sep = ", ")
cat(sprintf(
"\n Input data: %i species, %i genes",
paste0(
"geposan preset:",
"\n Included methods: %s",
"\n Number of species: %i",
"\n Number of genes: %i",
"\n Reference genes: %i",
"\n"
),
paste(sapply(x$methods, function(m) m$id), collapse = ", "),
length(x$species_ids),
length(x$gene_ids)
))
cat(sprintf(
"\n Comparison data: %i reference genes",
length(x$gene_ids),
length(x$reference_gene_ids)
))
cat(sprintf(
"\n Optimization target: %s\n",
x$optimization_target
))
invisible(x)
}