mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
Restructure classes and their responsibilities
This commit is contained in:
parent
01ec301d6d
commit
e2b93babe5
27 changed files with 974 additions and 634 deletions
93
R/clustering.R
Normal file
93
R/clustering.R
Normal file
|
|
@ -0,0 +1,93 @@
|
|||
#' Perform a cluster analysis.
|
||||
#'
|
||||
#' This function will cluster the data using [stats::hclust()] and
|
||||
#' [stats::cutree()]. Every cluster with at least two members qualifies for
|
||||
#' further analysis. Clusters are then ranked based on their size in relation
|
||||
#' to the total number of values. The return value is a final score between
|
||||
#' 0.0 and 1.0. Lower ranking clusters contribute less to this score.
|
||||
#'
|
||||
#' @param data The values that should be scored.
|
||||
#' @param span The maximum span of values considered to be in one cluster.
|
||||
#' @param weight The weight that will be given to the next largest cluster in
|
||||
#' relation to the previous one. For example, if `weight` is 0.7 (the
|
||||
#' default), the first cluster will weigh 1.0, the second 0.7, the third 0.49
|
||||
#' etc.
|
||||
clusteriness <- function(data, span = 1000000, weight = 0.7) {
|
||||
n <- length(data)
|
||||
|
||||
# Return a score of 0.0 if there is just one or no value at all.
|
||||
if (n < 2) {
|
||||
return(0.0)
|
||||
}
|
||||
|
||||
# Cluster the data and compute the cluster sizes.
|
||||
|
||||
tree <- stats::hclust(stats::dist(data))
|
||||
clusters <- stats::cutree(tree, h = span)
|
||||
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
|
||||
|
||||
# Compute the "clusteriness" score.
|
||||
|
||||
score <- 0.0
|
||||
|
||||
for (i in seq_along(cluster_sizes)) {
|
||||
cluster_size <- cluster_sizes[i]
|
||||
|
||||
if (cluster_size >= 2) {
|
||||
cluster_score <- cluster_size / n
|
||||
score <- score + weight^(i - 1) * cluster_score
|
||||
}
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
#' Process genes clustering their distance to telomeres.
|
||||
#'
|
||||
#' The result will be cached and can be reused for different presets, because
|
||||
#' it is independent of the reference genes in use.
|
||||
#'
|
||||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @seealso [clusteriness()]
|
||||
#'
|
||||
#' @export
|
||||
clustering <- function() {
|
||||
method(
|
||||
id = "clustering",
|
||||
name = "Clustering",
|
||||
description = "Clustering of genes",
|
||||
function(preset, progress) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
|
||||
cached("clustering", c(species_ids, gene_ids), {
|
||||
scores <- data.table(gene = gene_ids)
|
||||
|
||||
# Prefilter the input data by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
|
||||
genes_done <- 0
|
||||
genes_total <- length(gene_ids)
|
||||
|
||||
# Perform the cluster analysis for one gene.
|
||||
compute <- function(gene_id) {
|
||||
data <- distances[gene == gene_id, distance]
|
||||
score <- clusteriness(data)
|
||||
|
||||
genes_done <<- genes_done + 1
|
||||
progress(genes_done / genes_total)
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
scores[, score := compute(gene), by = gene]
|
||||
|
||||
result(
|
||||
method = "clustering",
|
||||
scores = scores
|
||||
)
|
||||
})
|
||||
}
|
||||
)
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue