Restructure classes and their responsibilities

This commit is contained in:
Elias Projahn 2021-12-16 13:01:44 +01:00
parent 01ec301d6d
commit e2b93babe5
27 changed files with 974 additions and 634 deletions

View file

@ -1,16 +1,17 @@
#' Analyze by applying the specified preset.
#' Analyze genes based on position data.
#'
#' @param preset The preset to use which should be created using [preset()].
#' @param progress A function to be called for progress information. The
#' function should accept a number between 0.0 and 1.0 for the current
#' progress.
#' progress. If no function is provided, a simple text progress bar will be
#' shown.
#'
#' @returns An object containing the results of the analysis with the following
#' items:
#' \describe{
#' \item{`preset`}{The preset that was used.}
#' \item{`weights`}{The optimal weights for ranking the reference genes.}
#' \item{`ranking`}{The optimal ranking created using the weights.}
#' \item{`scores`}{Table containing all scores for each gene.}
#' \item{`results`}{Results from the different methods including details.}
#' }
#'
#' @export
@ -19,80 +20,69 @@ analyze <- function(preset, progress = NULL) {
stop("Preset is invalid. Use geposan::preset() to create one.")
}
# Available methods by ID.
#
# A method describes a way to perform a computation on gene distance data
# that results in a single score per gene. The function should accept the
# preset to apply (see [preset()]) and an optional progress function (that
# may be called with a number between 0.0 and 1.0) as its parameters.
#
# The function should return a [data.table] with the following columns:
#
# - `gene` Gene ID of the processed gene.
# - `score` Score for the gene between 0.0 and 1.0.
methods <- list(
"clusteriness" = clusteriness,
"correlation" = correlation,
"neural" = neural,
"adjacency" = adjacency,
"proximity" = proximity
)
if (is.null(progress)) {
progress_bar <- progress::progress_bar$new()
progress_bar$update(0.0)
analysis <- cached("analysis", preset, {
total_progress <- 0.0
method_count <- length(preset$methods)
results <- data.table(gene = preset$gene_ids)
for (method_id in preset$methods) {
method_progress <- if (!is.null(progress)) {
function(p) {
progress(total_progress + p / method_count)
progress <- function(progress_value) {
if (!progress_bar$finished) {
progress_bar$update(progress_value)
if (progress_value >= 1.0) {
progress_bar$terminate()
}
}
method_results <- methods[[method_id]](
preset,
progress = method_progress
)$results
setnames(method_results, "score", method_id)
results <- merge(
results,
method_results,
by = "gene"
)
total_progress <- total_progress + 1 / method_count
}
results <- structure(
results,
class = c("geposan_results", class(results))
)
weights <- optimal_weights(
results,
preset$methods,
preset$reference_gene_ids,
target = preset$optimization_target
)
ranking <- ranking(results, weights)
structure(
list(
preset = preset,
weights = weights,
ranking = ranking
),
class = "geposan_analysis"
)
})
if (!is.null(progress)) {
progress(1.0)
}
analysis
progress_buffer <- 0.0
method_count <- length(preset$methods)
method_progress <- function(progress_value) {
progress(progress_buffer + progress_value / method_count)
}
scores <- data.table(gene = preset$gene_id)
results <- list()
for (method in preset$methods) {
method_results <- method$func(preset, method_progress)
scores <- merge(scores, method_results$scores)
setnames(scores, "score", method$id)
results <- c(results, list(method_results))
progress_buffer <- progress_buffer + 1 / method_count
progress(progress_buffer)
}
structure(
list(
preset = preset,
scores = scores,
results = results
),
class = "geposan_analysis"
)
}
#' Print an analysis object.
#'
#' @param x The analysis to print.
#' @param ... Other parameters.
#'
#' @seealso [analyze()]
#'
#' @export
print.geposan_analysis <- function(x, ...) {
cat("geposan analysis:\n\n")
print(x$preset)
cat("\n")
for (result in x$results) {
print(result)
cat("\n")
}
invisible(x)
}