mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Implement all methods using positions additionally
This commit is contained in:
parent
9cbc127177
commit
cfc5e7a6bf
5 changed files with 222 additions and 167 deletions
20
R/analyze.R
20
R/analyze.R
|
|
@ -35,7 +35,19 @@ analyze <- function(preset, progress = NULL) {
|
||||||
"clusteriness" = clusteriness,
|
"clusteriness" = clusteriness,
|
||||||
"correlation" = correlation,
|
"correlation" = correlation,
|
||||||
"proximity" = proximity,
|
"proximity" = proximity,
|
||||||
"neural" = neural
|
"neural" = neural,
|
||||||
|
"clusteriness_positions" = function(...) {
|
||||||
|
clusteriness(..., use_positions = TRUE)
|
||||||
|
},
|
||||||
|
"correlation_positions" = function(...) {
|
||||||
|
correlation(..., use_positions = TRUE)
|
||||||
|
},
|
||||||
|
"proximity_positions" = function(...) {
|
||||||
|
proximity(..., use_positions = TRUE)
|
||||||
|
},
|
||||||
|
"neural_positions" = function(...) {
|
||||||
|
neural(..., use_positions = TRUE)
|
||||||
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
results <- cached("analysis", preset, {
|
results <- cached("analysis", preset, {
|
||||||
|
|
@ -50,7 +62,11 @@ analyze <- function(preset, progress = NULL) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
method_results <- methods[[method_id]](preset, method_progress)
|
method_results <- methods[[method_id]](
|
||||||
|
preset,
|
||||||
|
progress = method_progress
|
||||||
|
)
|
||||||
|
|
||||||
setnames(method_results, "score", method_id)
|
setnames(method_results, "score", method_id)
|
||||||
|
|
||||||
results <- merge(
|
results <- merge(
|
||||||
|
|
|
||||||
|
|
@ -36,11 +36,11 @@ clusteriness_priv <- function(data, height = 1000000) {
|
||||||
}
|
}
|
||||||
|
|
||||||
# Process genes clustering their distance to telomeres.
|
# Process genes clustering their distance to telomeres.
|
||||||
clusteriness <- function(preset, progress = NULL) {
|
clusteriness <- function(preset, use_positions = FALSE, progress = NULL) {
|
||||||
species_ids <- preset$species_ids
|
species_ids <- preset$species_ids
|
||||||
gene_ids <- preset$gene_ids
|
gene_ids <- preset$gene_ids
|
||||||
|
|
||||||
cached("clusteriness", c(species_ids, gene_ids), {
|
cached("clusteriness", c(species_ids, gene_ids, use_positions), {
|
||||||
results <- data.table(gene = gene_ids)
|
results <- data.table(gene = gene_ids)
|
||||||
|
|
||||||
# Prefilter the input data by species.
|
# Prefilter the input data by species.
|
||||||
|
|
@ -54,7 +54,13 @@ clusteriness <- function(preset, progress = NULL) {
|
||||||
|
|
||||||
# Perform the cluster analysis for one gene.
|
# Perform the cluster analysis for one gene.
|
||||||
compute <- function(gene_id) {
|
compute <- function(gene_id) {
|
||||||
score <- clusteriness_priv(distances[gene_id, distance])
|
data <- if (use_positions) {
|
||||||
|
distances[gene_id, position]
|
||||||
|
} else {
|
||||||
|
distances[gene_id, distance]
|
||||||
|
}
|
||||||
|
|
||||||
|
score <- clusteriness_priv(data)
|
||||||
|
|
||||||
if (!is.null(progress)) {
|
if (!is.null(progress)) {
|
||||||
genes_done <<- genes_done + 1
|
genes_done <<- genes_done + 1
|
||||||
|
|
|
||||||
143
R/correlation.R
143
R/correlation.R
|
|
@ -1,79 +1,90 @@
|
||||||
# Compute the mean correlation coefficient comparing gene distances with a set
|
# Compute the mean correlation coefficient comparing gene distances with a set
|
||||||
# of reference genes.
|
# of reference genes.
|
||||||
correlation <- function(preset, progress = NULL) {
|
correlation <- function(preset, use_positions = FALSE, progress = NULL) {
|
||||||
species_ids <- preset$species_ids
|
species_ids <- preset$species_ids
|
||||||
gene_ids <- preset$gene_ids
|
gene_ids <- preset$gene_ids
|
||||||
reference_gene_ids <- preset$reference_gene_ids
|
reference_gene_ids <- preset$reference_gene_ids
|
||||||
|
|
||||||
cached("correlation", c(species_ids, gene_ids, reference_gene_ids), {
|
cached(
|
||||||
# Prefilter distances by species.
|
"correlation",
|
||||||
distances <- geposan::distances[species %chin% species_ids]
|
c(species_ids, gene_ids, reference_gene_ids, use_positions),
|
||||||
|
{ # nolint
|
||||||
|
# Prefilter distances by species.
|
||||||
|
distances <- geposan::distances[species %chin% species_ids]
|
||||||
|
|
||||||
# Tranform data to get species as rows and genes as columns. We
|
# Tranform data to get species as rows and genes as columns. We
|
||||||
# construct columns per species, because it requires fewer iterations,
|
# construct columns per species, because it requires fewer
|
||||||
# and transpose the table afterwards.
|
# iterations, and transpose the table afterwards.
|
||||||
|
|
||||||
data <- data.table(gene = gene_ids)
|
data <- data.table(gene = gene_ids)
|
||||||
|
|
||||||
# Make a column containing distance data for each species.
|
# Make a column containing distance data for each species.
|
||||||
for (species_id in species_ids) {
|
for (species_id in species_ids) {
|
||||||
species_distances <- distances[
|
species_data <- if (use_positions) {
|
||||||
species == species_id,
|
setnames(distances[
|
||||||
.(gene, distance)
|
species == species_id,
|
||||||
]
|
.(gene, position)
|
||||||
|
], "position", "distance")
|
||||||
data <- merge(data, species_distances, all.x = TRUE)
|
} else {
|
||||||
setnames(data, "distance", species_id)
|
distances[
|
||||||
}
|
species == species_id,
|
||||||
|
.(gene, distance)
|
||||||
# Transpose to the desired format.
|
]
|
||||||
data <- transpose(data, make.names = "gene")
|
}
|
||||||
|
|
||||||
if (!is.null(progress)) progress(0.33)
|
|
||||||
|
|
||||||
# Take the reference data.
|
|
||||||
reference_data <- data[, ..reference_gene_ids]
|
|
||||||
|
|
||||||
# Perform the correlation between all possible pairs.
|
|
||||||
results <- stats::cor(
|
|
||||||
data[, ..gene_ids],
|
|
||||||
reference_data,
|
|
||||||
use = "pairwise.complete.obs",
|
|
||||||
method = "spearman"
|
|
||||||
)
|
|
||||||
|
|
||||||
results <- data.table(results, keep.rownames = TRUE)
|
|
||||||
setnames(results, "rn", "gene")
|
|
||||||
|
|
||||||
# Remove correlations between the reference genes themselves.
|
|
||||||
for (reference_gene_id in reference_gene_ids) {
|
|
||||||
column <- quote(reference_gene_id)
|
|
||||||
results[gene == reference_gene_id, eval(column) := NA]
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!is.null(progress)) progress(0.66)
|
|
||||||
|
|
||||||
# Compute the final score as the mean of known correlation scores.
|
|
||||||
# Negative correlations will correctly lessen the score, which will be
|
|
||||||
# clamped to zero as its lower bound. Genes with no possible
|
|
||||||
# correlations at all will be assumed to have a score of 0.0.
|
|
||||||
|
|
||||||
compute_score <- function(scores) {
|
|
||||||
score <- mean(scores, na.rm = TRUE)
|
|
||||||
|
|
||||||
if (is.na(score) | score < 0.0) {
|
|
||||||
score <- 0.0
|
|
||||||
}
|
}
|
||||||
|
|
||||||
score
|
data <- merge(data, species_data, all.x = TRUE)
|
||||||
|
setnames(data, "distance", species_id)
|
||||||
|
|
||||||
|
# Transpose to the desired format.
|
||||||
|
data <- transpose(data, make.names = "gene")
|
||||||
|
|
||||||
|
if (!is.null(progress)) progress(0.33)
|
||||||
|
|
||||||
|
# Take the reference data.
|
||||||
|
reference_data <- data[, ..reference_gene_ids]
|
||||||
|
|
||||||
|
# Perform the correlation between all possible pairs.
|
||||||
|
results <- stats::cor(
|
||||||
|
data[, ..gene_ids],
|
||||||
|
reference_data,
|
||||||
|
use = "pairwise.complete.obs",
|
||||||
|
method = "spearman"
|
||||||
|
)
|
||||||
|
|
||||||
|
results <- data.table(results, keep.rownames = TRUE)
|
||||||
|
setnames(results, "rn", "gene")
|
||||||
|
|
||||||
|
# Remove correlations between the reference genes themselves.
|
||||||
|
for (reference_gene_id in reference_gene_ids) {
|
||||||
|
column <- quote(reference_gene_id)
|
||||||
|
results[gene == reference_gene_id, eval(column) := NA]
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!is.null(progress)) progress(0.66)
|
||||||
|
|
||||||
|
# Compute the final score as the mean of known correlation scores.
|
||||||
|
# Negative correlations will correctly lessen the score, which will
|
||||||
|
# be clamped to zero as its lower bound. Genes with no possible
|
||||||
|
# correlations at all will be assumed to have a score of 0.0.
|
||||||
|
|
||||||
|
compute_score <- function(scores) {
|
||||||
|
score <- mean(scores, na.rm = TRUE)
|
||||||
|
|
||||||
|
if (is.na(score) | score < 0.0) {
|
||||||
|
score <- 0.0
|
||||||
|
}
|
||||||
|
|
||||||
|
score
|
||||||
|
}
|
||||||
|
|
||||||
|
results[,
|
||||||
|
score := compute_score(as.matrix(.SD)),
|
||||||
|
.SDcols = reference_gene_ids,
|
||||||
|
by = gene
|
||||||
|
]
|
||||||
|
|
||||||
|
results[, .(gene, score)]
|
||||||
}
|
}
|
||||||
|
)
|
||||||
results[,
|
|
||||||
score := compute_score(as.matrix(.SD)),
|
|
||||||
.SDcols = reference_gene_ids,
|
|
||||||
by = gene
|
|
||||||
]
|
|
||||||
|
|
||||||
results[, .(gene, score)]
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
195
R/neural.R
195
R/neural.R
|
|
@ -1,114 +1,131 @@
|
||||||
# Find genes by training a neural network on reference position data.
|
# Find genes by training a neural network on reference position data.
|
||||||
#
|
#
|
||||||
# @param seed A seed to get reproducible results.
|
# @param seed A seed to get reproducible results.
|
||||||
neural <- function(preset, progress = NULL, seed = 448077) {
|
neural <- function(preset,
|
||||||
|
use_positions = FALSE,
|
||||||
|
progress = NULL,
|
||||||
|
seed = 448077) {
|
||||||
species_ids <- preset$species_ids
|
species_ids <- preset$species_ids
|
||||||
gene_ids <- preset$gene_ids
|
gene_ids <- preset$gene_ids
|
||||||
reference_gene_ids <- preset$reference_gene_ids
|
reference_gene_ids <- preset$reference_gene_ids
|
||||||
|
|
||||||
cached("neural", c(species_ids, gene_ids, reference_gene_ids), {
|
cached(
|
||||||
set.seed(seed)
|
"neural",
|
||||||
gene_count <- length(gene_ids)
|
c(species_ids, gene_ids, reference_gene_ids, use_positions),
|
||||||
|
{ # nolint
|
||||||
|
set.seed(seed)
|
||||||
|
gene_count <- length(gene_ids)
|
||||||
|
|
||||||
# Prefilter distances by species.
|
# Prefilter distances by species.
|
||||||
distances <- geposan::distances[species %chin% species_ids]
|
distances <- geposan::distances[species %chin% species_ids]
|
||||||
|
|
||||||
# Input data for the network. This contains the gene ID as an identifier
|
# Input data for the network. This contains the gene ID as an
|
||||||
# as well as the per-species gene distances as input variables.
|
# identifier as well as the per-species gene distances as input
|
||||||
data <- data.table(gene = gene_ids)
|
# variables.
|
||||||
|
data <- data.table(gene = gene_ids)
|
||||||
|
|
||||||
# Buffer to keep track of species included in the computation. Species
|
# Buffer to keep track of species included in the computation.
|
||||||
# from `species_ids` may be excluded if they don't have enough data.
|
# Species from `species_ids` may be excluded if they don't have
|
||||||
species_ids_included <- NULL
|
# enough data.
|
||||||
|
species_ids_included <- NULL
|
||||||
|
|
||||||
# Make a column containing distance data for each species.
|
# Make a column containing distance data for each species.
|
||||||
for (species_id in species_ids) {
|
for (species_id in species_ids) {
|
||||||
species_distances <- distances[
|
species_data <- if (use_positions) {
|
||||||
species == species_id,
|
setnames(distances[
|
||||||
.(gene, distance)
|
species == species_id,
|
||||||
|
.(gene, position)
|
||||||
|
], "position", "distance")
|
||||||
|
} else {
|
||||||
|
distances[
|
||||||
|
species == species_id,
|
||||||
|
.(gene, distance)
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
# Only include species with at least 25% known values.
|
||||||
|
|
||||||
|
species_distances <- stats::na.omit(species_data)
|
||||||
|
|
||||||
|
if (nrow(species_distances) >= 0.25 * gene_count) {
|
||||||
|
species_ids_included <- c(species_ids_included, species_id)
|
||||||
|
data <- merge(data, species_distances, all.x = TRUE)
|
||||||
|
|
||||||
|
# Replace missing data with mean values. The neural network
|
||||||
|
# can't handle NAs in a meaningful way. Choosing extreme
|
||||||
|
# values here would result in heavily biased results.
|
||||||
|
# Therefore, the mean value is chosen as a compromise.
|
||||||
|
# However, this will of course lessen the significance of
|
||||||
|
# the results.
|
||||||
|
|
||||||
|
mean_distance <- round(species_distances[, mean(distance)])
|
||||||
|
data[is.na(distance), distance := mean_distance]
|
||||||
|
|
||||||
|
# Name the new column after the species.
|
||||||
|
setnames(data, "distance", species_id)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
# Extract the reference genes.
|
||||||
|
|
||||||
|
reference_data <- data[gene %chin% reference_gene_ids]
|
||||||
|
reference_data[, neural := 1.0]
|
||||||
|
|
||||||
|
# Take out random samples from the remaining genes. This is another
|
||||||
|
# compromise with a negative impact on significance. Because there
|
||||||
|
# is no information on genes with are explicitely *not* TPE-OLD
|
||||||
|
# genes, we have to assume that a random sample of genes has a low
|
||||||
|
# probability of including TPE-OLD genes.
|
||||||
|
|
||||||
|
without_reference_data <- data[!gene %chin% reference_gene_ids]
|
||||||
|
|
||||||
|
reference_samples <- without_reference_data[
|
||||||
|
sample(
|
||||||
|
nrow(without_reference_data),
|
||||||
|
nrow(reference_data)
|
||||||
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
# Only include species with at least 25% known values.
|
reference_samples[, neural := 0.0]
|
||||||
|
|
||||||
species_distances <- stats::na.omit(species_distances)
|
# Merge training data. The training data includes all reference
|
||||||
|
# genes as well as an equal number of random sample genes.
|
||||||
|
training_data <- rbindlist(list(reference_data, reference_samples))
|
||||||
|
|
||||||
if (nrow(species_distances) >= 0.25 * gene_count) {
|
# Construct and train the neural network.
|
||||||
species_ids_included <- c(species_ids_included, species_id)
|
|
||||||
data <- merge(data, species_distances, all.x = TRUE)
|
|
||||||
|
|
||||||
# Replace missing data with mean values. The neural network
|
nn_formula <- stats::as.formula(sprintf(
|
||||||
# can't handle NAs in a meaningful way. Choosing extreme values
|
"neural~%s",
|
||||||
# here would result in heavily biased results. Therefore, the
|
paste(species_ids_included, collapse = "+")
|
||||||
# mean value is chosen as a compromise. However, this will of
|
))
|
||||||
# course lessen the significance of the results.
|
|
||||||
|
|
||||||
mean_distance <- round(species_distances[, mean(distance)])
|
layer1 <- length(species_ids) * 0.66
|
||||||
data[is.na(distance), distance := mean_distance]
|
layer2 <- layer1 * 0.66
|
||||||
|
layer3 <- layer2 * 0.66
|
||||||
|
|
||||||
# Name the new column after the species.
|
nn <- neuralnet::neuralnet(
|
||||||
setnames(data, "distance", species_id)
|
nn_formula,
|
||||||
}
|
training_data,
|
||||||
}
|
hidden = c(layer1, layer2, layer3),
|
||||||
|
linear.output = FALSE
|
||||||
# Extract the reference genes.
|
|
||||||
|
|
||||||
reference_data <- data[gene %chin% reference_gene_ids]
|
|
||||||
reference_data[, neural := 1.0]
|
|
||||||
|
|
||||||
# Take out random samples from the remaining genes. This is another
|
|
||||||
# compromise with a negative impact on significance. Because there is
|
|
||||||
# no information on genes with are explicitely *not* TPE-OLD genes, we
|
|
||||||
# have to assume that a random sample of genes has a low probability of
|
|
||||||
# including TPE-OLD genes.
|
|
||||||
|
|
||||||
without_reference_data <- data[!gene %chin% reference_gene_ids]
|
|
||||||
|
|
||||||
reference_samples <- without_reference_data[
|
|
||||||
sample(
|
|
||||||
nrow(without_reference_data),
|
|
||||||
nrow(reference_data)
|
|
||||||
)
|
)
|
||||||
]
|
|
||||||
|
|
||||||
reference_samples[, neural := 0.0]
|
if (!is.null(progress)) {
|
||||||
|
# We do everything in one go, so it's not possible to report
|
||||||
|
# detailed progress information. As the method is relatively
|
||||||
|
# quick, this should not be a problem.
|
||||||
|
progress(0.5)
|
||||||
|
}
|
||||||
|
|
||||||
# Merge training data. The training data includes all reference genes as
|
# Apply the neural network.
|
||||||
# well as an equal number of random sample genes.
|
data[, score := neuralnet::compute(nn, data)$net.result]
|
||||||
training_data <- rbindlist(list(reference_data, reference_samples))
|
|
||||||
|
|
||||||
# Construct and train the neural network.
|
if (!is.null(progress)) {
|
||||||
|
# See above.
|
||||||
|
progress(1.0)
|
||||||
|
}
|
||||||
|
|
||||||
nn_formula <- stats::as.formula(sprintf(
|
data[, .(gene, score)]
|
||||||
"neural~%s",
|
|
||||||
paste(species_ids_included, collapse = "+")
|
|
||||||
))
|
|
||||||
|
|
||||||
layer1 <- length(species_ids) * 0.66
|
|
||||||
layer2 <- layer1 * 0.66
|
|
||||||
layer3 <- layer2 * 0.66
|
|
||||||
|
|
||||||
nn <- neuralnet::neuralnet(
|
|
||||||
nn_formula,
|
|
||||||
training_data,
|
|
||||||
hidden = c(layer1, layer2, layer3),
|
|
||||||
linear.output = FALSE
|
|
||||||
)
|
|
||||||
|
|
||||||
if (!is.null(progress)) {
|
|
||||||
# We do everything in one go, so it's not possible to report
|
|
||||||
# detailed progress information. As the method is relatively quick,
|
|
||||||
# this should not be a problem.
|
|
||||||
progress(0.5)
|
|
||||||
}
|
}
|
||||||
|
)
|
||||||
# Apply the neural network.
|
|
||||||
data[, score := neuralnet::compute(nn, data)$net.result]
|
|
||||||
|
|
||||||
if (!is.null(progress)) {
|
|
||||||
# See above.
|
|
||||||
progress(1.0)
|
|
||||||
}
|
|
||||||
|
|
||||||
data[, .(gene, score)]
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -2,21 +2,26 @@
|
||||||
#
|
#
|
||||||
# A score will be given to each gene such that 0.0 corresponds to the maximal
|
# A score will be given to each gene such that 0.0 corresponds to the maximal
|
||||||
# mean distance across all genes and 1.0 corresponds to a distance of 0.
|
# mean distance across all genes and 1.0 corresponds to a distance of 0.
|
||||||
proximity <- function(preset, progress = NULL) {
|
proximity <- function(preset, use_positions = FALSE, progress = NULL) {
|
||||||
species_ids <- preset$species_ids
|
species_ids <- preset$species_ids
|
||||||
gene_ids <- preset$gene_ids
|
gene_ids <- preset$gene_ids
|
||||||
|
|
||||||
cached("proximity", c(species_ids, gene_ids), {
|
cached("proximity", c(species_ids, gene_ids, use_positions), {
|
||||||
# Prefilter distances by species and gene.
|
# Prefilter distances by species and gene.
|
||||||
distances <- geposan::distances[
|
data <- geposan::distances[
|
||||||
species %chin% preset$species_ids & gene %chin% preset$gene_ids
|
species %chin% preset$species_ids & gene %chin% preset$gene_ids
|
||||||
]
|
]
|
||||||
|
|
||||||
# Compute the score as described above.
|
# Compute the score as described above.
|
||||||
|
|
||||||
distances <- distances[, .(mean_distance = mean(distance)), by = "gene"]
|
data <- if (use_positions) {
|
||||||
max_distance <- distances[, max(mean_distance)]
|
data[, .(mean_distance = mean(position)), by = "gene"]
|
||||||
distances[, score := 1 - mean_distance / max_distance]
|
} else {
|
||||||
|
data[, .(mean_distance = mean(distance)), by = "gene"]
|
||||||
|
}
|
||||||
|
|
||||||
|
max_distance <- data[, max(mean_distance)]
|
||||||
|
data[, score := 1 - mean_distance / max_distance]
|
||||||
|
|
||||||
if (!is.null(progress)) {
|
if (!is.null(progress)) {
|
||||||
# We do everything in one go, so it's not possible to report
|
# We do everything in one go, so it's not possible to report
|
||||||
|
|
@ -25,6 +30,6 @@ proximity <- function(preset, progress = NULL) {
|
||||||
progress(1.0)
|
progress(1.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
distances[, .(gene, score)]
|
data[, .(gene, score)]
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue