mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
Implement all methods using positions additionally
This commit is contained in:
parent
9cbc127177
commit
cfc5e7a6bf
5 changed files with 222 additions and 167 deletions
143
R/correlation.R
143
R/correlation.R
|
|
@ -1,79 +1,90 @@
|
|||
# Compute the mean correlation coefficient comparing gene distances with a set
|
||||
# of reference genes.
|
||||
correlation <- function(preset, progress = NULL) {
|
||||
correlation <- function(preset, use_positions = FALSE, progress = NULL) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
cached("correlation", c(species_ids, gene_ids, reference_gene_ids), {
|
||||
# Prefilter distances by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
cached(
|
||||
"correlation",
|
||||
c(species_ids, gene_ids, reference_gene_ids, use_positions),
|
||||
{ # nolint
|
||||
# Prefilter distances by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
|
||||
# Tranform data to get species as rows and genes as columns. We
|
||||
# construct columns per species, because it requires fewer iterations,
|
||||
# and transpose the table afterwards.
|
||||
# Tranform data to get species as rows and genes as columns. We
|
||||
# construct columns per species, because it requires fewer
|
||||
# iterations, and transpose the table afterwards.
|
||||
|
||||
data <- data.table(gene = gene_ids)
|
||||
data <- data.table(gene = gene_ids)
|
||||
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_distances <- distances[
|
||||
species == species_id,
|
||||
.(gene, distance)
|
||||
]
|
||||
|
||||
data <- merge(data, species_distances, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
}
|
||||
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
|
||||
if (!is.null(progress)) progress(0.33)
|
||||
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
|
||||
# Remove correlations between the reference genes themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
|
||||
if (!is.null(progress)) progress(0.66)
|
||||
|
||||
# Compute the final score as the mean of known correlation scores.
|
||||
# Negative correlations will correctly lessen the score, which will be
|
||||
# clamped to zero as its lower bound. Genes with no possible
|
||||
# correlations at all will be assumed to have a score of 0.0.
|
||||
|
||||
compute_score <- function(scores) {
|
||||
score <- mean(scores, na.rm = TRUE)
|
||||
|
||||
if (is.na(score) | score < 0.0) {
|
||||
score <- 0.0
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_data <- if (use_positions) {
|
||||
setnames(distances[
|
||||
species == species_id,
|
||||
.(gene, position)
|
||||
], "position", "distance")
|
||||
} else {
|
||||
distances[
|
||||
species == species_id,
|
||||
.(gene, distance)
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
score
|
||||
data <- merge(data, species_data, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
|
||||
if (!is.null(progress)) progress(0.33)
|
||||
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
|
||||
# Remove correlations between the reference genes themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
|
||||
if (!is.null(progress)) progress(0.66)
|
||||
|
||||
# Compute the final score as the mean of known correlation scores.
|
||||
# Negative correlations will correctly lessen the score, which will
|
||||
# be clamped to zero as its lower bound. Genes with no possible
|
||||
# correlations at all will be assumed to have a score of 0.0.
|
||||
|
||||
compute_score <- function(scores) {
|
||||
score <- mean(scores, na.rm = TRUE)
|
||||
|
||||
if (is.na(score) | score < 0.0) {
|
||||
score <- 0.0
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
results[,
|
||||
score := compute_score(as.matrix(.SD)),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
|
||||
results[, .(gene, score)]
|
||||
}
|
||||
|
||||
results[,
|
||||
score := compute_score(as.matrix(.SD)),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
|
||||
results[, .(gene, score)]
|
||||
})
|
||||
)
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue