mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Initial commit
This commit is contained in:
commit
c52d42c2b6
24 changed files with 1350 additions and 0 deletions
63
R/ranking.R
Normal file
63
R/ranking.R
Normal file
|
|
@ -0,0 +1,63 @@
|
|||
#' Rank the results by computing a score.
|
||||
#'
|
||||
#' This function takes the result from [analyze()] and creates a score by
|
||||
#' computing a weighted mean across the different methods' results.
|
||||
#'
|
||||
#' @param results Results from [analyze()].
|
||||
#' @param weights Named list pairing method names with weighting factors.
|
||||
#'
|
||||
#' @result The input data with an additional column containing the score and
|
||||
#' another column containing the rank.
|
||||
#'
|
||||
#' @export
|
||||
ranking <- function(results, weights) {
|
||||
results <- copy(results)
|
||||
results[, score := 0.0]
|
||||
|
||||
for (method in names(weights)) {
|
||||
weighted <- weights[[method]] * results[, ..method]
|
||||
results[, score := score + weighted]
|
||||
}
|
||||
|
||||
# Normalize scores to be between 0.0 and 1.0.
|
||||
results[, score := score / sum(unlist(weights))]
|
||||
|
||||
setorder(results, -score)
|
||||
results[, rank := .I]
|
||||
}
|
||||
|
||||
#' Find the best weights to rank the results.
|
||||
#'
|
||||
#' This function finds the optimal parameters to [ranking()] that result in the
|
||||
#' reference genes ranking particulary high.
|
||||
#'
|
||||
#' @param results Results from [analyze()] or [ranking()].
|
||||
#' @param methods Methods to include in the score.
|
||||
#' @param reference_gene_ids IDs of the reference genes.
|
||||
#'
|
||||
#' @returns Named list pairing method names with their optimal weights.
|
||||
#'
|
||||
#' @export
|
||||
optimize_weights <- function(results, methods, reference_gene_ids) {
|
||||
# Create the named list from the factors vector.
|
||||
weights <- function(factors) {
|
||||
result <- NULL
|
||||
|
||||
mapply(function(method, factor) {
|
||||
result[[method]] <<- factor
|
||||
}, methods, factors)
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
# Compute the mean rank of the reference genes when applying the weights.
|
||||
mean_rank <- function(factors) {
|
||||
data <- ranking(results, weights(factors))
|
||||
data[gene %chin% reference_gene_ids, mean(rank)]
|
||||
}
|
||||
|
||||
factors <- stats::optim(rep(1.0, length(methods)), mean_rank)$par
|
||||
total_weight <- sum(factors)
|
||||
|
||||
weights(factors / total_weight)
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue