mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
Initial commit
This commit is contained in:
commit
c52d42c2b6
24 changed files with 1350 additions and 0 deletions
61
R/correlation.R
Normal file
61
R/correlation.R
Normal file
|
|
@ -0,0 +1,61 @@
|
|||
# Compute the mean correlation coefficient comparing gene distances with a set
|
||||
# of reference genes.
|
||||
correlation <- function(distances, preset) {
|
||||
results <- data.table(gene = preset$gene_ids)
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
reference_count <- length(reference_gene_ids)
|
||||
|
||||
# Prefilter distances by species.
|
||||
distances <- distances[species %chin% preset$species_ids]
|
||||
|
||||
# Add an index for quickly accessing data per gene.
|
||||
setkey(distances, gene)
|
||||
|
||||
# Prepare the reference genes' data.
|
||||
reference_distances <- distances[gene %chin% reference_gene_ids]
|
||||
|
||||
# Perform the correlation for one gene.
|
||||
compute <- function(gene_id) {
|
||||
gene_distances <- distances[gene_id]
|
||||
gene_species_count <- nrow(gene_distances)
|
||||
|
||||
# Return a score of 0.0 if there is just one or no value at all.
|
||||
if (gene_species_count <= 1) {
|
||||
return(0.0)
|
||||
}
|
||||
|
||||
# Buffer for the sum of correlation coefficients.
|
||||
correlation_sum <- 0
|
||||
|
||||
# Correlate with all reference genes but not with the gene itself.
|
||||
for (reference_gene_id in
|
||||
reference_gene_ids[reference_gene_ids != gene_id]) {
|
||||
data <- merge(
|
||||
gene_distances,
|
||||
reference_distances[reference_gene_id],
|
||||
by = "species"
|
||||
)
|
||||
|
||||
# Skip this reference gene, if there are not enough value pairs.
|
||||
# This will lessen the final score, because it effectively
|
||||
# represents a correlation coefficient of 0.0.
|
||||
if (nrow(data) <= 1) {
|
||||
next
|
||||
}
|
||||
|
||||
# Order data by the reference gene's distance to get a monotonic
|
||||
# relation.
|
||||
setorder(data, distance.y)
|
||||
|
||||
correlation_sum <- correlation_sum + abs(stats::cor(
|
||||
data[, distance.x], data[, distance.y],
|
||||
method = "spearman"
|
||||
))
|
||||
}
|
||||
|
||||
# Compute the score as the mean correlation coefficient.
|
||||
score <- correlation_sum / reference_count
|
||||
}
|
||||
|
||||
results[, score := compute(gene), by = 1:nrow(results)]
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue