Reindent code to use just two spaces

This commit is contained in:
Elias Projahn 2022-05-26 12:42:19 +02:00
parent a1e6147466
commit c04b6337e9
17 changed files with 1583 additions and 1582 deletions

View file

@ -12,244 +12,244 @@
#'
#' @export
neural <- function(seed = 180199, n_models = 5) {
method(
id = "neural",
name = "Neural",
description = "Assessment by neural network",
function(preset, progress) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids
method(
id = "neural",
name = "Neural",
description = "Assessment by neural network",
function(preset, progress) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids
cached(
"neural",
c(species_ids, gene_ids, reference_gene_ids, seed, n_models),
{ # nolint
reference_count <- length(reference_gene_ids)
stopifnot(n_models %in% 2:reference_count)
cached(
"neural",
c(species_ids, gene_ids, reference_gene_ids, seed, n_models),
{ # nolint
reference_count <- length(reference_gene_ids)
stopifnot(n_models %in% 2:reference_count)
# Make results reproducible.
tensorflow::set_random_seed(seed)
# Make results reproducible.
tensorflow::set_random_seed(seed)
# Step 1: Prepare input data.
# ---------------------------
# Step 1: Prepare input data.
# ---------------------------
# Prefilter distances by species.
distances <- geposan::distances[species %chin% species_ids]
# Prefilter distances by species.
distances <- geposan::distances[species %chin% species_ids]
# Input data for the network. This contains the gene ID as
# an identifier as well as the per-species gene distances as
# input variables.
data <- data.table(gene = gene_ids)
# Input data for the network. This contains the gene ID as
# an identifier as well as the per-species gene distances as
# input variables.
data <- data.table(gene = gene_ids)
# Buffer to keep track of the names of the input variables.
input_vars <- NULL
# Buffer to keep track of the names of the input variables.
input_vars <- NULL
# Make a columns containing positions and distances for each
# species.
for (species_id in species_ids) {
species_data <- distances[
species == species_id,
.(gene, distance)
]
# Make a columns containing positions and distances for each
# species.
for (species_id in species_ids) {
species_data <- distances[
species == species_id,
.(gene, distance)
]
# Only include species with at least 25% known values.
# As positions and distances always coexist, we don't
# loose any data here.
# Only include species with at least 25% known values.
# As positions and distances always coexist, we don't
# loose any data here.
species_data <- stats::na.omit(species_data)
species_data <- stats::na.omit(species_data)
if (nrow(species_data) >= 0.25 * length(gene_ids)) {
data <- merge(data, species_data, all.x = TRUE)
if (nrow(species_data) >= 0.25 * length(gene_ids)) {
data <- merge(data, species_data, all.x = TRUE)
# Replace missing data with mean values. The neural
# network can't handle NAs in a meaningful way.
# Choosing extreme values here would result in
# heavily biased results. Therefore, the mean value
# is chosen as a compromise. However, this will of
# course lessen the significance of the results.
# Replace missing data with mean values. The neural
# network can't handle NAs in a meaningful way.
# Choosing extreme values here would result in
# heavily biased results. Therefore, the mean value
# is chosen as a compromise. However, this will of
# course lessen the significance of the results.
mean_distance <- round(
species_data[, mean(distance)]
)
mean_distance <- round(
species_data[, mean(distance)]
)
data[is.na(distance), distance := mean_distance]
data[is.na(distance), distance := mean_distance]
# Name the new column after the species.
setnames(data, "distance", species_id)
# Name the new column after the species.
setnames(data, "distance", species_id)
# Add the input variable to the buffer.
input_vars <- c(input_vars, species_id)
}
}
# Add the input variable to the buffer.
input_vars <- c(input_vars, species_id)
}
}
progress(0.1)
progress(0.1)
# Step 2: Prepare training data.
# ------------------------------
# Step 2: Prepare training data.
# ------------------------------
# Take out the reference data.
# Take out the reference data.
reference_data <- data[gene %chin% reference_gene_ids]
reference_data[, score := 1.0]
reference_data <- data[gene %chin% reference_gene_ids]
reference_data[, score := 1.0]
# Take out random samples from the remaining genes. This is
# another compromise with a negative impact on
# significance. We assume that a random gene is not likely
# to match the reference genes.
# Take out random samples from the remaining genes. This is
# another compromise with a negative impact on
# significance. We assume that a random gene is not likely
# to match the reference genes.
without_reference_data <- data[
!gene %chin% reference_gene_ids
]
without_reference_data <- data[
!gene %chin% reference_gene_ids
]
control_data <- without_reference_data[
sample(
nrow(without_reference_data),
reference_count
)
]
control_data[, score := 0.0]
# Split the training data into random sets to have
# validation data for each model.
# Scramble the source tables.
reference_data <- reference_data[sample(reference_count)]
control_data <- control_data[sample(reference_count)]
networks <- list()
indices <- seq_len(reference_count)
indices_split <- split(indices, indices %% n_models)
for (i in seq_len(n_models)) {
training_data <- rbindlist(list(
reference_data[!indices_split[[i]]],
control_data[!indices_split[[i]]]
))
validation_data <- rbindlist(list(
reference_data[indices_split[[i]]],
control_data[indices_split[[i]]]
))
networks[[i]] <- list(
training_data = training_data,
validation_data = validation_data
)
}
# Step 3: Create, train and apply neural network.
# -----------------------------------------------
# Layers for the neural network.
input_layer <- length(input_vars)
layer1 <- input_layer
layer2 <- 0.5 * input_layer
layer3 <- 0.5 * layer2
# Convert data to matrix and normalize it.
to_matrix <- function(data) {
data_matrix <- as.matrix(data[, ..input_vars])
colnames(data_matrix) <- NULL
keras::normalize(data_matrix)
}
data_matrix <- to_matrix(data)
output_vars <- NULL
for (i in seq_along(networks)) {
# Create a new model for each training session, because
# the model would keep its state across training
# sessions otherwise.
model <- keras::keras_model_sequential() |>
keras::layer_dense(
units = layer1,
activation = "relu",
input_shape = input_layer,
) |>
keras::layer_dense(
units = layer2,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = layer3,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = 1,
activation = "sigmoid"
) |>
keras::compile(
loss = keras::loss_mean_absolute_error(),
optimizer = keras::optimizer_adam()
)
# Train the model.
network <- networks[[i]]
training_data <- network$training_data
training_matrix <- to_matrix(training_data)
validation_data <- network$validation_data
validation_matrix <- to_matrix(validation_data)
fit <- keras::fit(
model,
x = training_matrix,
y = training_data$score,
validation_data = list(
x_val = validation_matrix,
y_val = validation_data$score
),
epochs = 500,
verbose = FALSE
)
# Apply the model.
data[, new_score := stats::predict(model, data_matrix)]
# Remove the values of the training data itself.
data[gene %chin% training_data$gene, new_score := NA]
output_var <- sprintf("score%i", i)
setnames(data, "new_score", output_var)
output_vars <- c(output_vars, output_var)
# Store the details.
networks[[i]]$model <- keras::serialize_model(model)
networks[[i]]$fit <- fit
progress(0.1 + i * (0.9 / n_models))
}
# Compute the final score as the mean score.
data[,
score := mean(as.numeric(.SD), na.rm = TRUE),
.SDcols = output_vars,
by = gene
]
progress(1.0)
result(
method = "neural",
scores = data[, .(gene, score)],
details = list(
seed = seed,
n_models = n_models,
all_results = data[, !..input_vars],
networks = networks
)
)
}
control_data <- without_reference_data[
sample(
nrow(without_reference_data),
reference_count
)
]
control_data[, score := 0.0]
# Split the training data into random sets to have
# validation data for each model.
# Scramble the source tables.
reference_data <- reference_data[sample(reference_count)]
control_data <- control_data[sample(reference_count)]
networks <- list()
indices <- seq_len(reference_count)
indices_split <- split(indices, indices %% n_models)
for (i in seq_len(n_models)) {
training_data <- rbindlist(list(
reference_data[!indices_split[[i]]],
control_data[!indices_split[[i]]]
))
validation_data <- rbindlist(list(
reference_data[indices_split[[i]]],
control_data[indices_split[[i]]]
))
networks[[i]] <- list(
training_data = training_data,
validation_data = validation_data
)
}
# Step 3: Create, train and apply neural network.
# -----------------------------------------------
# Layers for the neural network.
input_layer <- length(input_vars)
layer1 <- input_layer
layer2 <- 0.5 * input_layer
layer3 <- 0.5 * layer2
# Convert data to matrix and normalize it.
to_matrix <- function(data) {
data_matrix <- as.matrix(data[, ..input_vars])
colnames(data_matrix) <- NULL
keras::normalize(data_matrix)
}
data_matrix <- to_matrix(data)
output_vars <- NULL
for (i in seq_along(networks)) {
# Create a new model for each training session, because
# the model would keep its state across training
# sessions otherwise.
model <- keras::keras_model_sequential() |>
keras::layer_dense(
units = layer1,
activation = "relu",
input_shape = input_layer,
) |>
keras::layer_dense(
units = layer2,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = layer3,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = 1,
activation = "sigmoid"
) |>
keras::compile(
loss = keras::loss_mean_absolute_error(),
optimizer = keras::optimizer_adam()
)
# Train the model.
network <- networks[[i]]
training_data <- network$training_data
training_matrix <- to_matrix(training_data)
validation_data <- network$validation_data
validation_matrix <- to_matrix(validation_data)
fit <- keras::fit(
model,
x = training_matrix,
y = training_data$score,
validation_data = list(
x_val = validation_matrix,
y_val = validation_data$score
),
epochs = 500,
verbose = FALSE
)
# Apply the model.
data[, new_score := stats::predict(model, data_matrix)]
# Remove the values of the training data itself.
data[gene %chin% training_data$gene, new_score := NA]
output_var <- sprintf("score%i", i)
setnames(data, "new_score", output_var)
output_vars <- c(output_vars, output_var)
# Store the details.
networks[[i]]$model <- keras::serialize_model(model)
networks[[i]]$fit <- fit
progress(0.1 + i * (0.9 / n_models))
}
# Compute the final score as the mean score.
data[,
score := mean(as.numeric(.SD), na.rm = TRUE),
.SDcols = output_vars,
by = gene
]
progress(1.0)
result(
method = "neural",
scores = data[, .(gene, score)],
details = list(
seed = seed,
n_models = n_models,
all_results = data[, !..input_vars],
networks = networks
)
)
}
)
)
}
)
}