mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Reindent code to use just two spaces
This commit is contained in:
parent
a1e6147466
commit
c04b6337e9
17 changed files with 1583 additions and 1582 deletions
|
|
@ -8,96 +8,97 @@
|
|||
#'
|
||||
#' @export
|
||||
correlation <- function(summarize = stats::median) {
|
||||
method(
|
||||
id = "correlation",
|
||||
name = "Correlation",
|
||||
description = "Correlation with reference genes",
|
||||
function(preset, progress) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
method(
|
||||
id = "correlation",
|
||||
name = "Correlation",
|
||||
description = "Correlation with reference genes",
|
||||
function(preset, progress) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
cached(
|
||||
"correlation",
|
||||
c(species_ids, gene_ids, reference_gene_ids, summarize),
|
||||
{ # nolint
|
||||
# Prefilter distances by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
cached(
|
||||
"correlation",
|
||||
c(species_ids, gene_ids, reference_gene_ids, summarize),
|
||||
{ # nolint
|
||||
# Prefilter distances by species.
|
||||
distances <- geposan::distances[species %chin% species_ids]
|
||||
|
||||
# Tranform data to get species as rows and genes as columns.
|
||||
# We construct columns per species, because it requires
|
||||
# fewer iterations, and transpose the table afterwards.
|
||||
# Tranform data to get species as rows and genes as columns.
|
||||
# We construct columns per species, because it requires
|
||||
# fewer iterations, and transpose the table afterwards.
|
||||
|
||||
data <- data.table(gene = gene_ids)
|
||||
data <- data.table(gene = gene_ids)
|
||||
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_data <- distances[
|
||||
species == species_id,
|
||||
.(gene, distance)
|
||||
]
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_data <- distances[
|
||||
species == species_id,
|
||||
.(gene, distance)
|
||||
]
|
||||
|
||||
data <- merge(data, species_data, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
}
|
||||
data <- merge(data, species_data, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
}
|
||||
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
|
||||
progress(0.33)
|
||||
progress(0.33)
|
||||
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
|
||||
# Remove correlations between the reference genes
|
||||
# themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
# Remove correlations between the reference genes
|
||||
# themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
|
||||
progress(0.66)
|
||||
progress(0.66)
|
||||
|
||||
# Combine the correlation coefficients.
|
||||
results[,
|
||||
max_correlation := as.double(summarize(stats::na.omit(
|
||||
# Convert the data.table subset into a
|
||||
# vector to get the correct na.omit
|
||||
# behavior.
|
||||
as.matrix(.SD)[1, ]
|
||||
))),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
# Combine the correlation coefficients.
|
||||
results[,
|
||||
max_correlation := as.double(summarize(stats::na.omit(
|
||||
# Convert the data.table subset into a
|
||||
# vector to get the correct na.omit
|
||||
# behavior.
|
||||
as.matrix(.SD)[1, ]
|
||||
))),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
|
||||
# Normalize scores.
|
||||
results[,
|
||||
score := (max_correlation - min(max_correlation)) /
|
||||
(max(max_correlation) - min(max_correlation))
|
||||
]
|
||||
# Normalize scores.
|
||||
results[
|
||||
,
|
||||
score := (max_correlation - min(max_correlation)) /
|
||||
(max(max_correlation) - min(max_correlation))
|
||||
]
|
||||
|
||||
# Normalize scores.
|
||||
# Normalize scores.
|
||||
|
||||
results[, .(gene, score)]
|
||||
results[, .(gene, score)]
|
||||
|
||||
result(
|
||||
method = "correlation",
|
||||
scores = results[, .(gene, score)],
|
||||
details = list(all_correlations = results)
|
||||
)
|
||||
}
|
||||
)
|
||||
result(
|
||||
method = "correlation",
|
||||
scores = results[, .(gene, score)],
|
||||
details = list(all_correlations = results)
|
||||
)
|
||||
}
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue