neural: Reimplement merging positions and distances

This commit is contained in:
Elias Projahn 2021-11-21 23:55:56 +01:00
parent 5a58f457a4
commit 61422a6a06
4 changed files with 146 additions and 129 deletions

View file

@ -22,7 +22,7 @@ Depends:
R (>= 2.10) R (>= 2.10)
Imports: Imports:
data.table, data.table,
neuralnet, keras,
rlang rlang
Suggests: Suggests:
biomaRt, biomaRt,

View file

@ -40,9 +40,6 @@ analyze <- function(preset, progress = NULL) {
correlation(..., use_positions = TRUE) correlation(..., use_positions = TRUE)
}, },
"neural" = neural, "neural" = neural,
"neural_positions" = function(...) {
neural(..., use_positions = TRUE)
},
"proximity" = proximity "proximity" = proximity
) )

View file

@ -1,18 +1,10 @@
# Find genes by training a neural network on reference position data. # Find genes by training and applying a neural network.
# neural <- function(preset, progress = NULL, seed = 49641) {
# @param seed A seed to get reproducible results.
neural <- function(preset,
use_positions = FALSE,
progress = NULL,
seed = 448077) {
species_ids <- preset$species_ids species_ids <- preset$species_ids
gene_ids <- preset$gene_ids gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids reference_gene_ids <- preset$reference_gene_ids
cached( cached("neural", c(species_ids, gene_ids, reference_gene_ids), {
"neural",
c(species_ids, gene_ids, reference_gene_ids, use_positions),
{ # nolint
set.seed(seed) set.seed(seed)
gene_count <- length(gene_ids) gene_count <- length(gene_ids)
@ -24,31 +16,24 @@ neural <- function(preset,
# variables. # variables.
data <- data.table(gene = gene_ids) data <- data.table(gene = gene_ids)
# Buffer to keep track of species included in the computation. # Buffer to keep track of the names of the input variables.
# Species from `species_ids` may be excluded if they don't have input_vars <- NULL
# enough data.
species_ids_included <- NULL
# Make a column containing positions for each species. # Make a columns containing positions and distances for each
# species.
for (species_id in species_ids) { for (species_id in species_ids) {
species_data <- if (use_positions) { species_data <- distances[
setnames(distances[
species == species_id, species == species_id,
.(gene, position) .(gene, position, distance)
], "position", "distance")
} else {
distances[
species == species_id,
.(gene, distance)
] ]
}
# Only include species with at least 25% known values. # Only include species with at least 25% known values. As
# positions and distances always coexist, we don't loose any
# data here.
species_data <- stats::na.omit(species_data) species_data <- stats::na.omit(species_data)
if (nrow(species_data) >= 0.25 * gene_count) { if (nrow(species_data) >= 0.25 * gene_count) {
species_ids_included <- c(species_ids_included, species_id)
data <- merge(data, species_data, all.x = TRUE) data <- merge(data, species_data, all.x = TRUE)
# Replace missing data with mean values. The neural network # Replace missing data with mean values. The neural network
@ -58,18 +43,33 @@ neural <- function(preset,
# However, this will of course lessen the significance of # However, this will of course lessen the significance of
# the results. # the results.
mean_position <- round(species_data[, mean(position)])
mean_distance <- round(species_data[, mean(distance)]) mean_distance <- round(species_data[, mean(distance)])
data[is.na(distance), distance := mean_distance]
# Name the new column after the species. data[is.na(distance), `:=`(
setnames(data, "distance", species_id) position = mean_position,
distance = mean_distance
)]
input_position <- sprintf("%s_position", species_id)
input_distance <- sprintf("%s_distance", species_id)
# Name the new columns after the species.
setnames(
data,
c("position", "distance"),
c(input_position, input_distance)
)
# Add the input variables to the buffer.
input_vars <- c(input_vars, input_position, input_distance)
} }
} }
# Extract the reference genes. # Extract the reference genes.
reference_data <- data[gene %chin% reference_gene_ids] reference_data <- data[gene %chin% reference_gene_ids]
reference_data[, neural := 1.0] reference_data[, score := 1.0]
# Take out random samples from the remaining genes. This is another # Take out random samples from the remaining genes. This is another
# compromise with a negative impact on significance. Because there # compromise with a negative impact on significance. Because there
@ -86,61 +86,82 @@ neural <- function(preset,
) )
] ]
reference_samples[, neural := 0.0] reference_samples[, score := 0.0]
# Merge training data. The training data includes all reference # Merge training data. The training data includes all reference
# genes as well as an equal number of random sample genes. # genes as well as an equal number of random sample genes.
training_data <- rbindlist(list(reference_data, reference_samples)) training_data <- rbindlist(list(reference_data, reference_samples))
# Construct and train the neural network. # Layers for the neural network.
input_layer <- length(input_vars)
layer1 <- input_layer
layer2 <- 0.5 * input_layer
layer3 <- 0.5 * layer2
nn_formula <- stats::as.formula(sprintf( # Train the model using the specified subset of the training data and
"neural~%s", # apply it for predicting the genes.
paste(species_ids_included, collapse = "+") apply_network <- function(training_gene_ids, gene_ids) {
)) # Create a new model for each training session, because the model
# would keep its state across training sessions otherwise.
model <- keras::keras_model_sequential() |>
keras::layer_dense(
units = layer1,
activation = "relu",
input_shape = input_layer,
) |>
keras::layer_dense(
units = layer2,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = layer3,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = 1,
activation = "sigmoid"
) |>
keras::compile(loss = "binary_crossentropy")
layer1 <- length(species_ids) * 0.66 # Prepare training data by filtering it to the given genes and
layer2 <- layer1 * 0.66 # converting it to a matrix.
layer3 <- layer2 * 0.66 training_data <- training_data[gene %chin% training_gene_ids]
training_matrix <- as.matrix(training_data[, ..input_vars])
colnames(training_matrix) <- NULL
training_matrix <- keras::normalize(training_matrix)
nn <- neuralnet::neuralnet( keras::fit(
nn_formula, model,
training_data, x = training_matrix,
hidden = c(layer1, layer2, layer3), y = training_data$score,
linear.output = FALSE epochs = 300,
verbose = FALSE
) )
if (!is.null(progress)) { # Convert the input data to a matrix.
progress(0.33) data_matrix <- as.matrix(data[gene %chin% gene_ids, ..input_vars])
colnames(data_matrix) <- NULL
data_matrix <- keras::normalize(data_matrix)
data[gene %chin% gene_ids, score := predict(model, data_matrix)]
} }
# Apply the neural network. # Apply the network to all non-training genes first.
data[, score := neuralnet::compute(nn, data)$net.result] apply_network(
training_data$gene,
# Reconstruct and run the neural network for each training gene gene_ids[!gene_ids %chin% training_data$gene]
# by training it without the respective gene.
for (gene_id in training_data$gene) {
nn <- neuralnet::neuralnet(
nn_formula,
training_data[gene != gene_id],
hidden = c(layer1, layer2, layer3),
linear.output = FALSE
) )
data[ # Apply the network to the training genes leaving out the gene itself.
gene == gene_id, for (training_gene_id in training_data$gene) {
score := neuralnet::compute( apply_network(
nn, training_data[gene != training_gene_id, gene],
training_data[gene == gene_id] training_gene_id
)$net.result )
]
}
if (!is.null(progress)) {
progress(1.0)
} }
data[, .(gene, score)] data[, .(gene, score)]
} })
)
} }

View file

@ -43,7 +43,6 @@ preset <- function(methods = c(
"correlation", "correlation",
"correlation_positions", "correlation_positions",
"neural", "neural",
"neural_positions",
"proximity" "proximity"
), ),
species_ids = NULL, species_ids = NULL,