analyze: Add optimization

This commit is contained in:
Elias Projahn 2021-11-19 15:07:15 +01:00
parent b018838d37
commit 5a58f457a4
5 changed files with 63 additions and 32 deletions

View file

@ -9,9 +9,8 @@
#' items:
#' \describe{
#' \item{`preset`}{The preset that was used.}
#' \item{`results`}{A [data.table] with one row for each gene identified by
#' it's ID (`gene` column). The additional columns contain the resulting
#' scores per method and are named after the method IDs.}
#' \item{`weights`}{The optimal weights for ranking the reference genes.}
#' \item{`ranking`}{The optimal ranking created using the weights.}
#' }
#'
#' @export
@ -75,10 +74,25 @@ analyze <- function(preset, progress = NULL) {
total_progress <- total_progress + 1 / method_count
}
results <- structure(
results,
class = c("geposan_results", class(results))
)
weights <- optimal_weights(
results,
preset$methods,
preset$reference_gene_ids,
target = preset$optimization_target
)
ranking <- ranking(results, weights)
structure(
list(
preset = preset,
results = results
weights = weights,
ranking = ranking
),
class = "geposan_analysis"
)

View file

@ -21,10 +21,18 @@
#' position data.
#' - `proximity` Mean proximity to telomeres.
#'
#' Available optimization targets are:
#'
#' - `mean` Mean rank of the reference genes.
#' - `max` First rank of the reference genes.
#' - `min` Last rank of the reference genes.
#'
#' @param methods Methods to apply.
#' @param species_ids IDs of species to include.
#' @param gene_ids IDs of genes to screen.
#' @param reference_gene_ids IDs of reference genes to compare to.
#' @param optimization_target Parameter of the reference genes that the ranking
#' should be optimized for.
#'
#' @return The preset to use with [analyze()].
#'
@ -40,7 +48,8 @@ preset <- function(methods = c(
),
species_ids = NULL,
gene_ids = NULL,
reference_gene_ids = NULL) {
reference_gene_ids = NULL,
optimization_target = "mean_rank") {
# Count included species per gene.
genes_n_species <- geposan::distances[
species %chin% species_ids,
@ -61,7 +70,8 @@ preset <- function(methods = c(
methods = sort(methods),
species_ids = sort(species_ids),
gene_ids = sort(gene_ids_filtered),
reference_gene_ids = sort(reference_gene_ids)
reference_gene_ids = sort(reference_gene_ids),
optimization_target = optimization_target
),
class = "geposan_preset"
)
@ -87,9 +97,14 @@ print.geposan_preset <- function(x, ...) {
))
cat(sprintf(
"\n Comparison data: %i reference genes\n",
"\n Comparison data: %i reference genes",
length(x$reference_gene_ids)
))
cat(sprintf(
"\n Optimization target: %s\n",
x$optimization_target
))
invisible(x)
}

View file

@ -13,11 +13,14 @@
#'
#' @export
ranking <- function(analysis, weights) {
if (!"geposan_analysis" %chin% class(analysis)) {
if ("geposan_analysis" %chin% class(analysis)) {
ranking <- copy(analysis$ranking)
} else if ("geposan_results" %chin% class(analysis)) {
ranking <- copy(analysis)
} else {
stop("Invalid analyis. Use geposan::analyze().")
}
ranking <- copy(analysis$results)
ranking[, score := 0.0]
for (method in names(weights)) {
@ -36,7 +39,7 @@ ranking <- function(analysis, weights) {
structure(
ranking,
class = c("geposan_ranking", "geposan_analysis", class(ranking))
class = c("geposan_ranking", "geposan_results", class(ranking))
)
}
@ -57,24 +60,13 @@ ranking <- function(analysis, weights) {
#' @export
optimal_weights <- function(analysis, methods, reference_gene_ids,
target = "mean") {
if (!"geposan_analysis" %chin% class(analysis)) {
if (!any(c("geposan_analysis", "geposan_results") %chin% class(analysis))) {
stop("Invalid analyis. Use geposan::analyze().")
}
# Create the named list from the factors vector.
weights <- function(factors) {
result <- NULL
mapply(function(method, factor) {
result[[method]] <<- factor
}, methods, factors)
result
}
# Compute the target rank of the reference genes when applying the weights.
target_rank <- function(factors) {
data <- ranking(analysis, weights(factors))
data <- ranking(analysis, as.list(factors))
result <- data[gene %chin% reference_gene_ids, if (target == "min") {
min(rank)
@ -91,10 +83,10 @@ optimal_weights <- function(analysis, methods, reference_gene_ids,
}
}
factors <- stats::optim(
rep(0.0, length(methods)),
target_rank
)$par
initial_factors <- rep(1.0, length(methods))
names(initial_factors) <- methods
weights(factors / max(abs(factors)))
optimal_factors <- stats::optim(initial_factors, target_rank)$par
as.list(optimal_factors / max(abs(optimal_factors)))
}

View file

@ -18,9 +18,8 @@ An object containing the results of the analysis with the following
items:
\describe{
\item{\code{preset}}{The preset that was used.}
\item{\code{results}}{A \link{data.table} with one row for each gene identified by
it's ID (\code{gene} column). The additional columns contain the resulting
scores per method and are named after the method IDs.}
\item{\code{weights}}{The optimal weights for ranking the reference genes.}
\item{\code{ranking}}{The optimal ranking created using the weights.}
}
}
\description{

View file

@ -9,7 +9,8 @@ preset(
"correlation_positions", "neural", "neural_positions", "proximity"),
species_ids = NULL,
gene_ids = NULL,
reference_gene_ids = NULL
reference_gene_ids = NULL,
optimization_target = "mean_rank"
)
}
\arguments{
@ -20,6 +21,9 @@ preset(
\item{gene_ids}{IDs of genes to screen.}
\item{reference_gene_ids}{IDs of reference genes to compare to.}
\item{optimization_target}{Parameter of the reference genes that the ranking
should be optimized for.}
}
\value{
The preset to use with \code{\link[=analyze]{analyze()}}.
@ -47,4 +51,11 @@ telomere across species.
position data.
\item \code{proximity} Mean proximity to telomeres.
}
Available optimization targets are:
\itemize{
\item \code{mean} Mean rank of the reference genes.
\item \code{max} First rank of the reference genes.
\item \code{min} Last rank of the reference genes.
}
}