Remove position analysis

This commit is contained in:
Elias Projahn 2021-11-22 15:16:05 +01:00
parent 255123c74f
commit 599f09a52f
5 changed files with 15 additions and 52 deletions

View file

@ -32,13 +32,7 @@ analyze <- function(preset, progress = NULL) {
# - `score` Score for the gene between 0.0 and 1.0.
methods <- list(
"clusteriness" = clusteriness,
"clusteriness_positions" = function(...) {
clusteriness(..., use_positions = TRUE)
},
"correlation" = correlation,
"correlation_positions" = function(...) {
correlation(..., use_positions = TRUE)
},
"neural" = neural,
"proximity" = proximity
)

View file

@ -36,11 +36,11 @@ clusteriness_priv <- function(data, height = 1000000) {
}
# Process genes clustering their distance to telomeres.
clusteriness <- function(preset, use_positions = FALSE, progress = NULL) {
clusteriness <- function(preset, progress = NULL) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
cached("clusteriness", c(species_ids, gene_ids, use_positions), {
cached("clusteriness", c(species_ids, gene_ids), {
results <- data.table(gene = gene_ids)
# Prefilter the input data by species.
@ -54,12 +54,7 @@ clusteriness <- function(preset, use_positions = FALSE, progress = NULL) {
# Perform the cluster analysis for one gene.
compute <- function(gene_id) {
data <- if (use_positions) {
distances[gene_id, position]
} else {
distances[gene_id, distance]
}
data <- distances[gene_id, distance]
score <- clusteriness_priv(data)
if (!is.null(progress)) {

View file

@ -1,14 +1,12 @@
# Compute the mean correlation coefficient comparing gene distances with a set
# of reference genes.
correlation <- function(preset, use_positions = FALSE, progress = NULL) {
correlation <- function(preset, progress = NULL) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids
cached(
"correlation",
c(species_ids, gene_ids, reference_gene_ids, use_positions),
{ # nolint
"correlation", c(species_ids, gene_ids, reference_gene_ids), {
# Prefilter distances by species.
distances <- geposan::distances[species %chin% species_ids]
@ -20,17 +18,10 @@ correlation <- function(preset, use_positions = FALSE, progress = NULL) {
# Make a column containing distance data for each species.
for (species_id in species_ids) {
species_data <- if (use_positions) {
setnames(distances[
species == species_id,
.(gene, position)
], "position", "distance")
} else {
distances[
species_data <- distances[
species == species_id,
.(gene, distance)
]
}
data <- merge(data, species_data, all.x = TRUE)
setnames(data, "distance", species_id)

View file

@ -25,10 +25,7 @@ neural <- function(preset, progress = NULL, seed = 49641) {
# Make a columns containing positions and distances for each
# species.
for (species_id in species_ids) {
species_data <- distances[
species == species_id,
.(gene, position, distance)
]
species_data <- distances[species == species_id, .(gene, distance)]
# Only include species with at least 25% known values. As
# positions and distances always coexist, we don't loose any
@ -46,26 +43,14 @@ neural <- function(preset, progress = NULL, seed = 49641) {
# However, this will of course lessen the significance of
# the results.
mean_position <- round(species_data[, mean(position)])
mean_distance <- round(species_data[, mean(distance)])
data[is.na(distance), `:=`(distance = mean_distance)]
data[is.na(distance), `:=`(
position = mean_position,
distance = mean_distance
)]
# Name the new column after the species.
setnames(data, "distance", species_id)
input_position <- sprintf("%s_position", species_id)
input_distance <- sprintf("%s_distance", species_id)
# Name the new columns after the species.
setnames(
data,
c("position", "distance"),
c(input_position, input_distance)
)
# Add the input variables to the buffer.
input_vars <- c(input_vars, input_position, input_distance)
# Add the input variable to the buffer.
input_vars <- c(input_vars, species_id)
}
}

View file

@ -40,9 +40,7 @@
#' @export
preset <- function(methods = c(
"clusteriness",
"clusteriness_positions",
"correlation",
"correlation_positions",
"neural",
"proximity"
),