mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
preset: Turn into S3 class
This commit is contained in:
parent
6494ae8200
commit
55958e0d85
8 changed files with 106 additions and 43 deletions
|
|
@ -1,5 +1,6 @@
|
|||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
S3method(print,geposan_preset)
|
||||
export(analyze)
|
||||
export(optimize_weights)
|
||||
export(preset)
|
||||
|
|
|
|||
42
R/analyze.R
42
R/analyze.R
|
|
@ -1,36 +1,6 @@
|
|||
#' Create a new preset.
|
||||
#'
|
||||
#' A preset is used to specify which methods and inputs should be used for an
|
||||
#' analysis. Note that the genes to process should normally include the
|
||||
#' reference genes to be able to assess the results later.
|
||||
#'
|
||||
#' Available methods are:
|
||||
#'
|
||||
#' - `clusteriness` How much the gene distances cluster across species.
|
||||
#' - `correlation` The mean correlation with the reference genes.
|
||||
#' - `proximity` Mean proximity to telomeres.
|
||||
#' - `neural` Assessment by neural network.
|
||||
#'
|
||||
#' @param methods IDs of methods to apply.
|
||||
#' @param species IDs of species to include.
|
||||
#' @param genes IDs of genes to screen.
|
||||
#' @param reference_genes IDs of reference genes to compare to.
|
||||
#'
|
||||
#' @return The preset to use with [analyze()].
|
||||
#'
|
||||
#' @export
|
||||
preset <- function(methods, species, genes, reference_genes) {
|
||||
list(
|
||||
method_ids = sort(methods),
|
||||
species_ids = sort(species),
|
||||
gene_ids = sort(genes),
|
||||
reference_gene_ids = sort(reference_genes)
|
||||
)
|
||||
}
|
||||
|
||||
#' Analyze by applying the specified preset.
|
||||
#'
|
||||
#' @param preset The preset to use which can be created using [preset()].
|
||||
#' @param preset The preset to use which should be created using [preset()].
|
||||
#' @param progress A function to be called for progress information. The
|
||||
#' function should accept a number between 0.0 and 1.0 for the current
|
||||
#' progress.
|
||||
|
|
@ -41,6 +11,10 @@ preset <- function(methods, species, genes, reference_genes) {
|
|||
#'
|
||||
#' @export
|
||||
analyze <- function(preset, progress = NULL) {
|
||||
if (class(preset) != "geposan_preset") {
|
||||
stop("Preset is invalid. Use geposan::preset() to create one.")
|
||||
}
|
||||
|
||||
# Available methods by ID.
|
||||
#
|
||||
# A method describes a way to perform a computation on gene distance data
|
||||
|
|
@ -64,10 +38,12 @@ analyze <- function(preset, progress = NULL) {
|
|||
method_count <- length(preset$method_ids)
|
||||
results <- data.table(gene = preset$gene_ids)
|
||||
|
||||
for (method_id in preset$method_ids) {
|
||||
method_progress <- if (!is.null(progress)) function(p) {
|
||||
for (method_id in preset$methods) {
|
||||
method_progress <- if (!is.null(progress)) {
|
||||
function(p) {
|
||||
progress(total_progress + p / method_count)
|
||||
}
|
||||
}
|
||||
|
||||
method_results <- methods[[method_id]](preset, method_progress)
|
||||
setnames(method_results, "score", method_id)
|
||||
|
|
|
|||
66
R/preset.R
Normal file
66
R/preset.R
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
#' Create a new preset.
|
||||
#'
|
||||
#' A preset is used to specify which methods and inputs should be used for an
|
||||
#' analysis. Note that the genes to process should normally include the
|
||||
#' reference genes to be able to assess the results later.
|
||||
#'
|
||||
#' Available methods are:
|
||||
#'
|
||||
#' - `clusteriness` How much the gene distances cluster across species.
|
||||
#' - `correlation` The mean correlation with the reference genes.
|
||||
#' - `proximity` Mean proximity to telomeres.
|
||||
#' - `neural` Assessment by neural network.
|
||||
#'
|
||||
#' @param methods Methods to apply.
|
||||
#' @param species_ids IDs of species to include.
|
||||
#' @param gene_ids IDs of genes to screen.
|
||||
#' @param reference_gene_ids IDs of reference genes to compare to.
|
||||
#'
|
||||
#' @return The preset to use with [analyze()].
|
||||
#'
|
||||
#' @export
|
||||
preset <- function(methods = c(
|
||||
"clusteriness",
|
||||
"correlation",
|
||||
"neural",
|
||||
"proximity"
|
||||
),
|
||||
species_ids = NULL,
|
||||
gene_ids = NULL,
|
||||
reference_gene_ids = NULL) {
|
||||
# The included data gets sorted to be able to produce predictable hashes
|
||||
# for the object later.
|
||||
structure(
|
||||
list(
|
||||
methods = sort(methods),
|
||||
species_ids = sort(species_ids),
|
||||
gene_ids = sort(gene_ids),
|
||||
reference_gene_ids = sort(reference_gene_ids)
|
||||
),
|
||||
class = "geposan_preset"
|
||||
)
|
||||
}
|
||||
|
||||
#' S3 method to print a preset object.
|
||||
#'
|
||||
#' @seealso [preset()]
|
||||
#'
|
||||
#' @export
|
||||
print.geposan_preset <- function(preset, ...) {
|
||||
cat("geposan preset:")
|
||||
cat("\n Included methods: ")
|
||||
cat(preset$method_ids, sep = ", ")
|
||||
|
||||
cat(sprintf(
|
||||
"\n Input data: %i species, %i genes",
|
||||
length(preset$species_ids),
|
||||
length(preset$gene_ids)
|
||||
))
|
||||
|
||||
cat(sprintf(
|
||||
"\n Comparison data: %i reference genes\n",
|
||||
length(preset$reference_gene_ids)
|
||||
))
|
||||
|
||||
invisible(preset)
|
||||
}
|
||||
|
|
@ -7,7 +7,7 @@
|
|||
analyze(preset, progress = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{preset}{The preset to use which can be created using \code{\link[=preset]{preset()}}.}
|
||||
\item{preset}{The preset to use which should be created using \code{\link[=preset]{preset()}}.}
|
||||
|
||||
\item{progress}{A function to be called for progress information. The
|
||||
function should accept a number between 0.0 and 1.0 for the current
|
||||
|
|
|
|||
|
|
@ -5,10 +5,11 @@
|
|||
\alias{distances}
|
||||
\title{Information on gene positions across species.}
|
||||
\format{
|
||||
A \link{data.table} with 1390730 rows and 3 variables:
|
||||
A \link{data.table} with 1506182 rows and 4 variables:
|
||||
\describe{
|
||||
\item{species}{Species ID}
|
||||
\item{gene}{Gene ID}
|
||||
\item{position}{Gene start position}
|
||||
\item{distance}{Distance to nearest telomere}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,19 +1,24 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/analyze.R
|
||||
% Please edit documentation in R/preset.R
|
||||
\name{preset}
|
||||
\alias{preset}
|
||||
\title{Create a new preset.}
|
||||
\usage{
|
||||
preset(methods, species, genes, reference_genes)
|
||||
preset(
|
||||
methods = c("clusteriness", "correlation", "neural", "proximity"),
|
||||
species_ids = NULL,
|
||||
gene_ids = NULL,
|
||||
reference_gene_ids = NULL
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{methods}{IDs of methods to apply.}
|
||||
\item{methods}{Methods to apply.}
|
||||
|
||||
\item{species}{IDs of species to include.}
|
||||
\item{species_ids}{IDs of species to include.}
|
||||
|
||||
\item{genes}{IDs of genes to screen.}
|
||||
\item{gene_ids}{IDs of genes to screen.}
|
||||
|
||||
\item{reference_genes}{IDs of reference genes to compare to.}
|
||||
\item{reference_gene_ids}{IDs of reference genes to compare to.}
|
||||
}
|
||||
\value{
|
||||
The preset to use with \code{\link[=analyze]{analyze()}}.
|
||||
|
|
|
|||
14
man/print.geposan_preset.Rd
Normal file
14
man/print.geposan_preset.Rd
Normal file
|
|
@ -0,0 +1,14 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/preset.R
|
||||
\name{print.geposan_preset}
|
||||
\alias{print.geposan_preset}
|
||||
\title{S3 method to print a preset object.}
|
||||
\usage{
|
||||
\method{print}{geposan_preset}(preset, ...)
|
||||
}
|
||||
\description{
|
||||
S3 method to print a preset object.
|
||||
}
|
||||
\seealso{
|
||||
\code{\link[=preset]{preset()}}
|
||||
}
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
\alias{species}
|
||||
\title{Information on included species from the Ensembl database.}
|
||||
\format{
|
||||
A \link{data.table} with 91 rows and 2 variables:
|
||||
A \link{data.table} with 99 rows and 2 variables:
|
||||
\describe{
|
||||
\item{id}{Unique species ID}
|
||||
\item{name}{Human readable species name}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue