mirror of
				https://github.com/johrpan/geposan.git
				synced 2025-10-26 18:57:25 +01:00 
			
		
		
		
	Store more method results
This commit is contained in:
		
							parent
							
								
									f2bc4318a2
								
							
						
					
					
						commit
						51e7176a1a
					
				
					 5 changed files with 46 additions and 7 deletions
				
			
		|  | @ -52,7 +52,7 @@ analyze <- function(preset, progress = NULL) { | |||
|             method_results <- methods[[method_id]]( | ||||
|                 preset, | ||||
|                 progress = method_progress | ||||
|             ) | ||||
|             )$results | ||||
| 
 | ||||
|             setnames(method_results, "score", method_id) | ||||
| 
 | ||||
|  |  | |||
|  | @ -65,6 +65,14 @@ clusteriness <- function(preset, progress = NULL) { | |||
|             score | ||||
|         } | ||||
| 
 | ||||
|         results[, score := compute(gene), by = 1:nrow(results)] | ||||
|         structure( | ||||
|             list( | ||||
|                 results = results[, | ||||
|                     score := compute(gene), | ||||
|                     by = gene | ||||
|                 ] | ||||
|             ), | ||||
|             class = "geposan_method_results" | ||||
|         ) | ||||
|     }) | ||||
| } | ||||
|  |  | |||
|  | @ -76,6 +76,14 @@ correlation <- function(preset, progress = NULL) { | |||
|             ] | ||||
| 
 | ||||
|             results[, .(gene, score)] | ||||
| 
 | ||||
|             structure( | ||||
|                 list( | ||||
|                     results = results[, .(gene, score)], | ||||
|                     all_correlations = results | ||||
|                 ), | ||||
|                 class = "geposan_method_results" | ||||
|             ) | ||||
|         } | ||||
|     ) | ||||
| } | ||||
|  |  | |||
							
								
								
									
										26
									
								
								R/neural.R
									
										
									
									
									
								
							
							
						
						
									
										26
									
								
								R/neural.R
									
										
									
									
									
								
							|  | @ -120,7 +120,7 @@ neural <- function(preset, progress = NULL, seed = 49641) { | |||
|             colnames(training_matrix) <- NULL | ||||
|             training_matrix <- keras::normalize(training_matrix) | ||||
| 
 | ||||
|             keras::fit( | ||||
|             fit <- keras::fit( | ||||
|                 model, | ||||
|                 x = training_matrix, | ||||
|                 y = training_data$score, | ||||
|  | @ -142,22 +142,40 @@ neural <- function(preset, progress = NULL, seed = 49641) { | |||
|                 progress_buffer <<- progress_buffer + progress_step | ||||
|                 progress(progress_buffer) | ||||
|             } | ||||
| 
 | ||||
|             list( | ||||
|                 training_gene_ids = training_gene_ids, | ||||
|                 gene_ids = gene_ids, | ||||
|                 model = model, | ||||
|                 fit = fit | ||||
|             ) | ||||
|         } | ||||
| 
 | ||||
|         # Apply the network to all non-training genes first. | ||||
|         apply_network( | ||||
|         network <- apply_network( | ||||
|             training_data$gene, | ||||
|             gene_ids[!gene_ids %chin% training_data$gene] | ||||
|         ) | ||||
| 
 | ||||
|         cross_networks <- NULL | ||||
| 
 | ||||
|         # Apply the network to the training genes leaving out the gene itself. | ||||
|         for (training_gene_id in training_data$gene) { | ||||
|             apply_network( | ||||
|             cross_network <- apply_network( | ||||
|                 training_data[gene != training_gene_id, gene], | ||||
|                 training_gene_id | ||||
|             ) | ||||
| 
 | ||||
|             cross_networks <- c(cross_networks, cross_network) | ||||
|         } | ||||
| 
 | ||||
|         data[, .(gene, score)] | ||||
|         structure( | ||||
|             list( | ||||
|                 results = data[, .(gene, score)], | ||||
|                 network = network, | ||||
|                 cross_networks = cross_networks | ||||
|             ), | ||||
|             class = "geposan_method_results" | ||||
|         ) | ||||
|     }) | ||||
| } | ||||
|  |  | |||
|  | @ -24,6 +24,11 @@ proximity <- function(preset, progress = NULL) { | |||
|             progress(1.0) | ||||
|         } | ||||
| 
 | ||||
|         data[, .(gene, score)] | ||||
|         structure( | ||||
|             list( | ||||
|                 results = data[, .(gene, score)] | ||||
|             ), | ||||
|             class = "geposan_method_results" | ||||
|         ) | ||||
|     }) | ||||
| } | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue