neural: Refactor and increase gene requirement

This commit is contained in:
Elias Projahn 2022-05-26 19:50:23 +02:00
parent c04b6337e9
commit 49981300fb
2 changed files with 168 additions and 140 deletions

View file

@ -7,11 +7,19 @@
#' final score will be the mean of the result of applying the different
#' models. There should be at least two training sets. The analysis will only
#' work, if there is at least one reference gene per training set.
#' @param gene_requirement Minimum proportion of genes from the preset that a
#' species has to have in order to be included in the models.
#' @param control_ratio The proportion of random control genes that is included
#' in the training data sets in addition to the reference genes. This should
#' be a numeric value between 0.0 and 1.0.
#'
#' @return An object of class `geposan_method`.
#'
#' @export
neural <- function(seed = 180199, n_models = 5) {
neural <- function(seed = 180199,
n_models = 5,
gene_requirement = 0.5,
control_ratio = 0.5) {
method(
id = "neural",
name = "Neural",
@ -23,65 +31,52 @@ neural <- function(seed = 180199, n_models = 5) {
cached(
"neural",
c(species_ids, gene_ids, reference_gene_ids, seed, n_models),
c(
species_ids,
gene_ids,
reference_gene_ids,
seed,
n_models,
gene_requirement,
control_ratio
),
{ # nolint
reference_count <- length(reference_gene_ids)
stopifnot(n_models %in% 2:reference_count)
control_count <- ceiling(reference_count * control_ratio /
(1 - control_ratio))
# Make results reproducible.
tensorflow::set_random_seed(seed)
# Step 1: Prepare input data.
# ---------------------------
# Prefilter distances by species.
distances <- geposan::distances[species %chin% species_ids]
# Prefilter distances by species and gene.
distances <- geposan::distances[species %chin% species_ids &
gene %chin% gene_ids]
# Input data for the network. This contains the gene ID as
# an identifier as well as the per-species gene distances as
# input variables.
data <- data.table(gene = gene_ids)
# Only include species that have at least 25% of the included genes.
distances[, species_n_genes := .N, by = species]
distances <- distances[species_n_genes >=
gene_requirement * length(gene_ids)]
included_species <- distances[, unique(species)]
# Buffer to keep track of the names of the input variables.
input_vars <- NULL
# Reshape data to put species into columns.
data <- dcast(
distances,
gene ~ species,
value.var = "distance"
)
# Make a columns containing positions and distances for each
# species.
for (species_id in species_ids) {
species_data <- distances[
species == species_id,
.(gene, distance)
]
# Only include species with at least 25% known values.
# As positions and distances always coexist, we don't
# loose any data here.
species_data <- stats::na.omit(species_data)
if (nrow(species_data) >= 0.25 * length(gene_ids)) {
data <- merge(data, species_data, all.x = TRUE)
# Replace missing data with mean values. The neural
# network can't handle NAs in a meaningful way.
# Choosing extreme values here would result in
# heavily biased results. Therefore, the mean value
# is chosen as a compromise. However, this will of
# course lessen the significance of the results.
mean_distance <- round(
species_data[, mean(distance)]
)
data[is.na(distance), distance := mean_distance]
# Name the new column after the species.
setnames(data, "distance", species_id)
# Add the input variable to the buffer.
input_vars <- c(input_vars, species_id)
}
}
# Replace values that are still missing with mean values for the
# species in question.
data[, (included_species) := lapply(included_species, \(species) {
species <- get(species)
species[is.na(species)] <- mean(species, na.rm = TRUE)
species
})]
progress(0.1)
@ -89,140 +84,81 @@ neural <- function(seed = 180199, n_models = 5) {
# ------------------------------
# Take out the reference data.
reference_data <- data[gene %chin% reference_gene_ids]
reference_data[, score := 1.0]
# Take out random samples from the remaining genes. This is
# another compromise with a negative impact on
# significance. We assume that a random gene is not likely
# to match the reference genes.
without_reference_data <- data[
!gene %chin% reference_gene_ids
# Draw control data from the remaining genes.
control_data <- data[!gene %chin% reference_gene_ids][
sample(.N, control_count)
]
control_data <- without_reference_data[
sample(
nrow(without_reference_data),
reference_count
)
]
control_data[, score := 0.0]
# Split the training data into random sets to have
# validation data for each model.
# Randomly distribute the indices of the reference and control genes
# across one bucket per model.
# Scramble the source tables.
reference_data <- reference_data[sample(reference_count)]
control_data <- control_data[sample(reference_count)]
reference_sets <- split(
sample(reference_count),
seq_len(reference_count) %% n_models
)
networks <- list()
control_sets <- split(
sample(control_count),
seq_len(control_count) %% n_models
)
indices <- seq_len(reference_count)
indices_split <- split(indices, indices %% n_models)
for (i in seq_len(n_models)) {
# Prepare the data for each model. Each model will have one pair of
# reference and control gene sets left out for validation. The
# training data consists of all the remaining sets.
networks <- lapply(seq_len(n_models), \(index) {
training_data <- rbindlist(list(
reference_data[!indices_split[[i]]],
control_data[!indices_split[[i]]]
reference_data[!reference_sets[[index]]],
control_data[!control_sets[[index]]]
))
validation_data <- rbindlist(list(
reference_data[indices_split[[i]]],
control_data[indices_split[[i]]]
reference_data[reference_sets[[index]]],
control_data[control_sets[[index]]]
))
networks[[i]] <- list(
list(
training_data = training_data,
validation_data = validation_data
)
}
})
# Step 3: Create, train and apply neural network.
# -----------------------------------------------
# Layers for the neural network.
input_layer <- length(input_vars)
layer1 <- input_layer
layer2 <- 0.5 * input_layer
layer3 <- 0.5 * layer2
# Convert data to matrix and normalize it.
to_matrix <- function(data) {
data_matrix <- as.matrix(data[, ..input_vars])
colnames(data_matrix) <- NULL
keras::normalize(data_matrix)
}
data_matrix <- to_matrix(data)
data_matrix <- prepare_data(data, included_species)
output_vars <- NULL
for (i in seq_along(networks)) {
network <- networks[[i]]
# Create a new model for each training session, because
# the model would keep its state across training
# sessions otherwise.
model <- keras::keras_model_sequential() |>
keras::layer_dense(
units = layer1,
activation = "relu",
input_shape = input_layer,
) |>
keras::layer_dense(
units = layer2,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = layer3,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = 1,
activation = "sigmoid"
) |>
keras::compile(
loss = keras::loss_mean_absolute_error(),
optimizer = keras::optimizer_adam()
)
model <- create_model(length(included_species))
# Train the model.
network <- networks[[i]]
training_data <- network$training_data
training_matrix <- to_matrix(training_data)
validation_data <- network$validation_data
validation_matrix <- to_matrix(validation_data)
fit <- keras::fit(
fit <- train_model(
model,
x = training_matrix,
y = training_data$score,
validation_data = list(
x_val = validation_matrix,
y_val = validation_data$score
),
epochs = 500,
verbose = FALSE
network$training_data,
network$validation_data,
included_species
)
# Apply the model.
data[, new_score := stats::predict(model, data_matrix)]
# Remove the values of the training data itself.
data[gene %chin% training_data$gene, new_score := NA]
data[gene %chin% network$training_data$gene, new_score := NA]
output_var <- sprintf("score%i", i)
setnames(data, "new_score", output_var)
output_vars <- c(output_vars, output_var)
# Store the details.
networks[[i]]$model <- keras::serialize_model(model)
networks[[i]]$fit <- fit
@ -244,7 +180,7 @@ neural <- function(seed = 180199, n_models = 5) {
details = list(
seed = seed,
n_models = n_models,
all_results = data[, !..input_vars],
all_results = data[, !..included_species],
networks = networks
)
)
@ -253,3 +189,83 @@ neural <- function(seed = 180199, n_models = 5) {
}
)
}
#' Create a `keras` model based on the number of input variables.
#'
#' @param n_input_vars Number of input variables (i.e. species).
#' @return A `keras` model.
#'
#' @noRd
create_model <- function(n_input_vars) {
# Layers for the neural network.
layer1 <- n_input_vars
layer2 <- 0.5 * layer1
layer3 <- 0.5 * layer2
keras::keras_model_sequential() |>
keras::layer_dense(
units = layer1,
activation = "relu",
input_shape = n_input_vars,
) |>
keras::layer_dense(
units = layer2,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = layer3,
activation = "relu",
kernel_regularizer = keras::regularizer_l2()
) |>
keras::layer_dense(
units = 1,
activation = "sigmoid"
) |>
keras::compile(
loss = keras::loss_mean_absolute_error(),
optimizer = keras::optimizer_adam()
)
}
#' Train a model on a specific training dataset.
#'
#' @param model The model created using [create_model()]. The model will be
#' changed reflecting the state after training.
#' @param training_data Data to fit the model to.
#' @param validation_data Additional data to assess the model performance.
#' @param input_vars Character vector of input variables that should be
#' included.
#'
#' @return The `keras` fit object describing the training process.
#' @noRd
train_model <- function(model, training_data, validation_data, input_vars) {
training_matrix <- prepare_data(training_data, input_vars)
validation_matrix <- prepare_data(validation_data, input_vars)
keras::fit(
model,
x = training_matrix,
y = training_data$score,
validation_data = list(
x_val = validation_matrix,
y_val = validation_data$score
),
epochs = 500,
verbose = FALSE
)
}
#' Convert data to a matrix and normalize it.
#'
#' @param data Input data.
#' @param input_vars Character vector of input variables that should be
#' included.
#'
#' @return A data matrix that can be used within the models.
#' @noRd
prepare_data <- function(data, input_vars) {
data_matrix <- as.matrix(data[, ..input_vars])
colnames(data_matrix) <- NULL
keras::normalize(data_matrix)
}