validate: Update and extend

This commit is contained in:
Elias Projahn 2022-01-26 11:38:39 +01:00
parent 016a9ada9d
commit 3cedc4fea4
2 changed files with 106 additions and 80 deletions

View file

@ -1,63 +1,75 @@
#' Perform cross-validation for the analysis.
#' Perform cross-validation for the ranking.
#'
#' This function reoptimizes the analysis leaving out one of the original
#' This function reoptimizes the ranking leaving out one of the original
#' reference genes at a time.
#'
#' @param analysis The analysis to validate.
#' @param ranking The ranking to validate.
#' @param reference_gene_ids The reference gene IDs whose ranking should be
#' validated.
#' @param method_ids IDs of the methods that were used.
#' @param progress An optional progress function that should accept a single
#' value between 0.0 and 1.0 for progress information.
#'
#' @returns An object containing the mean absolute error and the mean percent
#' rank for the original analysis as well as the validation.
#' @returns A validation object with the following items:
#' \describe{
#' \item{`validation`}{A `data.table` containing percentiles of the
#' comparison genes from the original ranking as well as their validation.
#' }
#' \item{`mean_score`}{The mean score of the genes.}
#' \item{`mean_percentile_original`}{The mean percentile of the genes in
#' the original ranking.
#' }
#' \item{`mean_percentile_validation`}{The mean percentile of the genes
#' when optimizing without themselves.
#' }
#' \item{`mean_error`}{The mean absolute error.}
#' }
#'
#' @export
validate <- function(analysis, progress = NULL) {
if (inherits(analysis, "geposan_analysis")) {
stop("Analysis is invalid. Use geposan::analyze().")
validate <- function(ranking, reference_gene_ids, method_ids, progress = NULL) {
if (!inherits(ranking, "geposan_ranking")) {
stop("Ranking is invalid. Use geposan::ranking().")
}
cached("validation", analysis$preset, {
reference_gene_ids <- analysis$preset$reference_gene_ids
n_references <- length(reference_gene_ids)
methods <- analysis$preset$methods
ranking_reference <- analysis$ranking
n_ranks <- nrow(ranking_reference)
if (is.null(progress)) {
progress_bar <- progress::progress_bar$new()
progress_bar$update(0.0)
mean_error_reference <- mean(
1.0 - ranking_reference[gene %chin% reference_gene_ids, score]
)
mean_rank_reference <- mean(
1.0 - ranking_reference[gene %chin% reference_gene_ids, rank] /
n_ranks
)
mean_error_validation <- 0.0
mean_rank_validation <- 0.0
progress <- function(progress_value) {
if (!progress_bar$finished) {
progress_bar$update(progress_value)
if (progress_value >= 1.0) {
progress_bar$terminate()
}
}
}
}
progress_state <- 0.0
progress_step <- 1.0 / n_references
progress_step <- 1.0 / length(reference_gene_ids)
for (validation_gene_id in reference_gene_ids) {
results <- ranking[gene %chin% reference_gene_ids, .(gene, percentile)]
for (gene_id in reference_gene_ids) {
included_gene_ids <- reference_gene_ids[
reference_gene_ids != validation_gene_id
reference_gene_ids != gene_id
]
weights <- optimal_weights(
analysis,
methods,
ranking,
method_ids,
included_gene_ids
)
ranking_validation <- ranking(analysis, weights)
ranking_validation <- ranking(ranking, weights)
mean_error_validation <- mean_error_validation +
(1.0 - ranking_validation[gene == validation_gene_id, score]) /
n_references
mean_rank_validation <- mean_rank_validation +
(1.0 - ranking_validation[gene == validation_gene_id, rank] /
n_ranks) / n_references
results[
gene == gene_id,
percentile_validation := ranking_validation[
gene == gene_id,
percentile
]
]
if (!is.null(progress)) {
progress_state <- progress_state + progress_step
@ -65,16 +77,18 @@ validate <- function(analysis, progress = NULL) {
}
}
results[, error := percentile - percentile_validation]
setorder(results, error)
structure(
list(
mean_error_reference = mean_error_reference,
mean_error_validation = mean_error_validation,
mean_rank_reference = mean_rank_reference,
mean_rank_validation = mean_rank_validation
validation = results,
mean_percentile_original = results[, mean(percentile)],
mean_percentile_validation = results[, mean(percentile_validation)],
mean_error = results[, mean(error)]
),
class = "geposan_validation"
)
})
}
#' S3 method to print a validation object.
@ -86,22 +100,17 @@ validate <- function(analysis, progress = NULL) {
#'
#' @export
print.geposan_validation <- function(x, ...) {
cat("geposan validation:\n")
cat(sprintf(
paste0(
"\n Absolute scores:",
"\n Mean error reference: %.3f",
"\n Mean error validation: %.3f",
"\n",
"\n Ranks:",
"\n Mean rank reference: %.1f%%",
"\n Mean rank validation: %.1f%%",
"geposan validation:",
"\n Mean percentile original: %.1f%%",
"\n Mean percentile validation: %.1f%%",
"\n Mean error: %.1f percent points",
"\n"
),
x$mean_error_reference,
x$mean_error_validation,
x$mean_rank_reference * 100,
x$mean_rank_validation * 100
x$mean_percentile_original * 100,
x$mean_percentile_validation * 100,
x$mean_error * 100
))
invisible(x)

View file

@ -2,21 +2,38 @@
% Please edit documentation in R/validate.R
\name{validate}
\alias{validate}
\title{Perform cross-validation for the analysis.}
\title{Perform cross-validation for the ranking.}
\usage{
validate(analysis, progress = NULL)
validate(ranking, reference_gene_ids, method_ids, progress = NULL)
}
\arguments{
\item{analysis}{The analysis to validate.}
\item{ranking}{The ranking to validate.}
\item{reference_gene_ids}{The reference gene IDs whose ranking should be
validated.}
\item{method_ids}{IDs of the methods that were used.}
\item{progress}{An optional progress function that should accept a single
value between 0.0 and 1.0 for progress information.}
}
\value{
An object containing the mean absolute error and the mean percent
rank for the original analysis as well as the validation.
A validation object with the following items:
\describe{
\item{\code{validation}}{A \code{data.table} containing percentiles of the
comparison genes from the original ranking as well as their validation.
}
\item{\code{mean_score}}{The mean score of the genes.}
\item{\code{mean_percentile_original}}{The mean percentile of the genes in
the original ranking.
}
\item{\code{mean_percentile_validation}}{The mean percentile of the genes
when optimizing without themselves.
}
\item{\code{mean_error}}{The mean absolute error.}
}
}
\description{
This function reoptimizes the analysis leaving out one of the original
This function reoptimizes the ranking leaving out one of the original
reference genes at a time.
}