mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
preset: Filter species in addition to genes
This commit is contained in:
parent
9e96c54f23
commit
3217c9bd29
4 changed files with 49 additions and 48 deletions
|
|
@ -7,8 +7,6 @@
|
||||||
#' final score will be the mean of the result of applying the different
|
#' final score will be the mean of the result of applying the different
|
||||||
#' models. There should be at least two training sets. The analysis will only
|
#' models. There should be at least two training sets. The analysis will only
|
||||||
#' work, if there is at least one reference gene per training set.
|
#' work, if there is at least one reference gene per training set.
|
||||||
#' @param gene_requirement Minimum proportion of genes from the preset that a
|
|
||||||
#' species has to have in order to be included in the models.
|
|
||||||
#' @param control_ratio The proportion of random control genes that is included
|
#' @param control_ratio The proportion of random control genes that is included
|
||||||
#' in the training data sets in addition to the reference genes. This should
|
#' in the training data sets in addition to the reference genes. This should
|
||||||
#' be a numeric value between 0.0 and 1.0.
|
#' be a numeric value between 0.0 and 1.0.
|
||||||
|
|
@ -16,10 +14,7 @@
|
||||||
#' @return An object of class `geposan_method`.
|
#' @return An object of class `geposan_method`.
|
||||||
#'
|
#'
|
||||||
#' @export
|
#' @export
|
||||||
neural <- function(seed = 180199,
|
neural <- function(seed = 180199, n_models = 5, control_ratio = 0.5) {
|
||||||
n_models = 5,
|
|
||||||
gene_requirement = 0.5,
|
|
||||||
control_ratio = 0.5) {
|
|
||||||
method(
|
method(
|
||||||
id = "neural",
|
id = "neural",
|
||||||
name = "Neural",
|
name = "Neural",
|
||||||
|
|
@ -37,7 +32,6 @@ neural <- function(seed = 180199,
|
||||||
reference_gene_ids,
|
reference_gene_ids,
|
||||||
seed,
|
seed,
|
||||||
n_models,
|
n_models,
|
||||||
gene_requirement,
|
|
||||||
control_ratio
|
control_ratio
|
||||||
),
|
),
|
||||||
{ # nolint
|
{ # nolint
|
||||||
|
|
@ -57,12 +51,6 @@ neural <- function(seed = 180199,
|
||||||
distances <- geposan::distances[species %chin% species_ids &
|
distances <- geposan::distances[species %chin% species_ids &
|
||||||
gene %chin% gene_ids]
|
gene %chin% gene_ids]
|
||||||
|
|
||||||
# Only include species that have at least 25% of the included genes.
|
|
||||||
distances[, species_n_genes := .N, by = species]
|
|
||||||
distances <- distances[species_n_genes >=
|
|
||||||
gene_requirement * length(gene_ids)]
|
|
||||||
included_species <- distances[, unique(species)]
|
|
||||||
|
|
||||||
# Reshape data to put species into columns.
|
# Reshape data to put species into columns.
|
||||||
data <- dcast(
|
data <- dcast(
|
||||||
distances,
|
distances,
|
||||||
|
|
@ -72,7 +60,7 @@ neural <- function(seed = 180199,
|
||||||
|
|
||||||
# Replace values that are still missing with mean values for the
|
# Replace values that are still missing with mean values for the
|
||||||
# species in question.
|
# species in question.
|
||||||
data[, (included_species) := lapply(included_species, \(species) {
|
data[, (species_ids) := lapply(species_ids, \(species) {
|
||||||
species <- get(species)
|
species <- get(species)
|
||||||
species[is.na(species)] <- mean(species, na.rm = TRUE)
|
species[is.na(species)] <- mean(species, na.rm = TRUE)
|
||||||
species
|
species
|
||||||
|
|
@ -129,7 +117,7 @@ neural <- function(seed = 180199,
|
||||||
# Step 3: Create, train and apply neural network.
|
# Step 3: Create, train and apply neural network.
|
||||||
# -----------------------------------------------
|
# -----------------------------------------------
|
||||||
|
|
||||||
data_matrix <- prepare_data(data, included_species)
|
data_matrix <- prepare_data(data, species_ids)
|
||||||
output_vars <- NULL
|
output_vars <- NULL
|
||||||
|
|
||||||
for (i in seq_along(networks)) {
|
for (i in seq_along(networks)) {
|
||||||
|
|
@ -138,14 +126,14 @@ neural <- function(seed = 180199,
|
||||||
# Create a new model for each training session, because
|
# Create a new model for each training session, because
|
||||||
# the model would keep its state across training
|
# the model would keep its state across training
|
||||||
# sessions otherwise.
|
# sessions otherwise.
|
||||||
model <- create_model(length(included_species))
|
model <- create_model(length(species_ids))
|
||||||
|
|
||||||
# Train the model.
|
# Train the model.
|
||||||
fit <- train_model(
|
fit <- train_model(
|
||||||
model,
|
model,
|
||||||
network$training_data,
|
network$training_data,
|
||||||
network$validation_data,
|
network$validation_data,
|
||||||
included_species
|
species_ids
|
||||||
)
|
)
|
||||||
|
|
||||||
# Apply the model.
|
# Apply the model.
|
||||||
|
|
@ -180,7 +168,7 @@ neural <- function(seed = 180199,
|
||||||
details = list(
|
details = list(
|
||||||
seed = seed,
|
seed = seed,
|
||||||
n_models = n_models,
|
n_models = n_models,
|
||||||
all_results = data[, !..included_species],
|
all_results = data[, !..species_ids],
|
||||||
networks = networks
|
networks = networks
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
|
||||||
44
R/preset.R
44
R/preset.R
|
|
@ -3,16 +3,19 @@
|
||||||
#' A preset is used to specify which methods and inputs should be used for an
|
#' A preset is used to specify which methods and inputs should be used for an
|
||||||
#' analysis. Note that the genes to process should normally include the
|
#' analysis. Note that the genes to process should normally include the
|
||||||
#' reference genes to be able to assess the results later. The genes will be
|
#' reference genes to be able to assess the results later. The genes will be
|
||||||
#' filtered based on how many species have data for them. Genes which only have
|
#' filtered based on how many species have data for them. Afterwards, species
|
||||||
#' orthologs for less than 25% of the input species will be excluded from the
|
#' that still have many missing genes will also be excluded. See the different
|
||||||
#' preset and the analyis. See the different method functions for the available
|
#' method functions for the available methods: [clustering()], [correlation()],
|
||||||
#' methods: [clustering()], [correlation()], [neural()], [adjacency()] and
|
#' [neural()], [adjacency()] and [species_adjacency()].
|
||||||
#' [species_adjacency()].
|
|
||||||
#'
|
#'
|
||||||
#' @param reference_gene_ids IDs of reference genes to compare to.
|
#' @param reference_gene_ids IDs of reference genes to compare to.
|
||||||
#' @param methods List of methods to apply.
|
#' @param methods List of methods to apply.
|
||||||
#' @param species_ids IDs of species to include.
|
#' @param species_ids IDs of species to include.
|
||||||
#' @param gene_ids IDs of genes to screen.
|
#' @param gene_ids IDs of genes to screen.
|
||||||
|
#' @param species_requirement The proportion of species a gene has to have
|
||||||
|
#' orthologs in in order for the gene to qualify.
|
||||||
|
#' @param gene_requirement The proportion of genes that a species has to have
|
||||||
|
#' in order for the species to be included in the analysis.
|
||||||
#'
|
#'
|
||||||
#' @return The preset to use with [analyze()].
|
#' @return The preset to use with [analyze()].
|
||||||
#'
|
#'
|
||||||
|
|
@ -20,21 +23,32 @@
|
||||||
preset <- function(reference_gene_ids,
|
preset <- function(reference_gene_ids,
|
||||||
methods = all_methods(),
|
methods = all_methods(),
|
||||||
species_ids = geposan::species$id,
|
species_ids = geposan::species$id,
|
||||||
gene_ids = geposan::genes$id) {
|
gene_ids = geposan::genes$id,
|
||||||
# Count included species per gene.
|
species_requirement = 0.25,
|
||||||
genes_n_species <- geposan::distances[
|
gene_requirement = 0.5) {
|
||||||
species %chin% species_ids,
|
# Prefilter distances.
|
||||||
.(n_species = .N),
|
distances <- geposan::distances[
|
||||||
by = "gene"
|
species %chin% species_ids & gene %chin% gene_ids
|
||||||
]
|
]
|
||||||
|
|
||||||
# Filter out genes with less than 25% existing orthologs.
|
# Count included species per gene.
|
||||||
|
genes_n_species <- distances[, .(n_species = .N), by = "gene"]
|
||||||
|
|
||||||
|
# Filter out genes with less too few existing orthologs.
|
||||||
gene_ids_filtered <- genes_n_species[
|
gene_ids_filtered <- genes_n_species[
|
||||||
gene %chin% gene_ids &
|
n_species >= species_requirement * length(species_ids),
|
||||||
n_species >= 0.25 * length(species_ids),
|
|
||||||
gene
|
gene
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# Count included genes per species.
|
||||||
|
species_n_genes <- geposan::distances[, .(n_genes = .N), by = "species"]
|
||||||
|
|
||||||
|
# Filter out species that have too few of the genes.
|
||||||
|
species_ids_filtered <- species_n_genes[
|
||||||
|
n_genes >= gene_requirement * length(gene_ids_filtered),
|
||||||
|
species
|
||||||
|
]
|
||||||
|
|
||||||
reference_gene_ids_excluded <- reference_gene_ids[
|
reference_gene_ids_excluded <- reference_gene_ids[
|
||||||
!reference_gene_ids %chin% gene_ids_filtered
|
!reference_gene_ids %chin% gene_ids_filtered
|
||||||
]
|
]
|
||||||
|
|
@ -65,7 +79,7 @@ preset <- function(reference_gene_ids,
|
||||||
list(
|
list(
|
||||||
reference_gene_ids = sort(reference_gene_ids_included),
|
reference_gene_ids = sort(reference_gene_ids_included),
|
||||||
methods = methods,
|
methods = methods,
|
||||||
species_ids = sort(species_ids),
|
species_ids = sort(species_ids_filtered),
|
||||||
gene_ids = sort(gene_ids_filtered)
|
gene_ids = sort(gene_ids_filtered)
|
||||||
),
|
),
|
||||||
class = "geposan_preset"
|
class = "geposan_preset"
|
||||||
|
|
|
||||||
|
|
@ -4,12 +4,7 @@
|
||||||
\alias{neural}
|
\alias{neural}
|
||||||
\title{Find genes by training and applying a neural network.}
|
\title{Find genes by training and applying a neural network.}
|
||||||
\usage{
|
\usage{
|
||||||
neural(
|
neural(seed = 180199, n_models = 5, control_ratio = 0.5)
|
||||||
seed = 180199,
|
|
||||||
n_models = 5,
|
|
||||||
gene_requirement = 0.5,
|
|
||||||
control_ratio = 0.5
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{seed}{The seed will be used to make the results reproducible.}
|
\item{seed}{The seed will be used to make the results reproducible.}
|
||||||
|
|
@ -21,9 +16,6 @@ final score will be the mean of the result of applying the different
|
||||||
models. There should be at least two training sets. The analysis will only
|
models. There should be at least two training sets. The analysis will only
|
||||||
work, if there is at least one reference gene per training set.}
|
work, if there is at least one reference gene per training set.}
|
||||||
|
|
||||||
\item{gene_requirement}{Minimum proportion of genes from the preset that a
|
|
||||||
species has to have in order to be included in the models.}
|
|
||||||
|
|
||||||
\item{control_ratio}{The proportion of random control genes that is included
|
\item{control_ratio}{The proportion of random control genes that is included
|
||||||
in the training data sets in addition to the reference genes. This should
|
in the training data sets in addition to the reference genes. This should
|
||||||
be a numeric value between 0.0 and 1.0.}
|
be a numeric value between 0.0 and 1.0.}
|
||||||
|
|
|
||||||
|
|
@ -8,7 +8,9 @@ preset(
|
||||||
reference_gene_ids,
|
reference_gene_ids,
|
||||||
methods = all_methods(),
|
methods = all_methods(),
|
||||||
species_ids = geposan::species$id,
|
species_ids = geposan::species$id,
|
||||||
gene_ids = geposan::genes$id
|
gene_ids = geposan::genes$id,
|
||||||
|
species_requirement = 0.25,
|
||||||
|
gene_requirement = 0.5
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
|
|
@ -19,6 +21,12 @@ preset(
|
||||||
\item{species_ids}{IDs of species to include.}
|
\item{species_ids}{IDs of species to include.}
|
||||||
|
|
||||||
\item{gene_ids}{IDs of genes to screen.}
|
\item{gene_ids}{IDs of genes to screen.}
|
||||||
|
|
||||||
|
\item{species_requirement}{The proportion of species a gene has to have
|
||||||
|
orthologs in in order for the gene to qualify.}
|
||||||
|
|
||||||
|
\item{gene_requirement}{The proportion of genes that a species has to have
|
||||||
|
in order for the species to be included in the analysis.}
|
||||||
}
|
}
|
||||||
\value{
|
\value{
|
||||||
The preset to use with \code{\link[=analyze]{analyze()}}.
|
The preset to use with \code{\link[=analyze]{analyze()}}.
|
||||||
|
|
@ -27,9 +35,8 @@ The preset to use with \code{\link[=analyze]{analyze()}}.
|
||||||
A preset is used to specify which methods and inputs should be used for an
|
A preset is used to specify which methods and inputs should be used for an
|
||||||
analysis. Note that the genes to process should normally include the
|
analysis. Note that the genes to process should normally include the
|
||||||
reference genes to be able to assess the results later. The genes will be
|
reference genes to be able to assess the results later. The genes will be
|
||||||
filtered based on how many species have data for them. Genes which only have
|
filtered based on how many species have data for them. Afterwards, species
|
||||||
orthologs for less than 25\% of the input species will be excluded from the
|
that still have many missing genes will also be excluded. See the different
|
||||||
preset and the analyis. See the different method functions for the available
|
method functions for the available methods: \code{\link[=clustering]{clustering()}}, \code{\link[=correlation]{correlation()}},
|
||||||
methods: \code{\link[=clustering]{clustering()}}, \code{\link[=correlation]{correlation()}}, \code{\link[=neural]{neural()}}, \code{\link[=adjacency]{adjacency()}} and
|
\code{\link[=neural]{neural()}}, \code{\link[=adjacency]{adjacency()}} and \code{\link[=species_adjacency]{species_adjacency()}}.
|
||||||
\code{\link[=species_adjacency]{species_adjacency()}}.
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue