mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
preset: Filter species in addition to genes
This commit is contained in:
parent
9e96c54f23
commit
3217c9bd29
4 changed files with 49 additions and 48 deletions
|
|
@ -7,8 +7,6 @@
|
|||
#' final score will be the mean of the result of applying the different
|
||||
#' models. There should be at least two training sets. The analysis will only
|
||||
#' work, if there is at least one reference gene per training set.
|
||||
#' @param gene_requirement Minimum proportion of genes from the preset that a
|
||||
#' species has to have in order to be included in the models.
|
||||
#' @param control_ratio The proportion of random control genes that is included
|
||||
#' in the training data sets in addition to the reference genes. This should
|
||||
#' be a numeric value between 0.0 and 1.0.
|
||||
|
|
@ -16,10 +14,7 @@
|
|||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @export
|
||||
neural <- function(seed = 180199,
|
||||
n_models = 5,
|
||||
gene_requirement = 0.5,
|
||||
control_ratio = 0.5) {
|
||||
neural <- function(seed = 180199, n_models = 5, control_ratio = 0.5) {
|
||||
method(
|
||||
id = "neural",
|
||||
name = "Neural",
|
||||
|
|
@ -37,7 +32,6 @@ neural <- function(seed = 180199,
|
|||
reference_gene_ids,
|
||||
seed,
|
||||
n_models,
|
||||
gene_requirement,
|
||||
control_ratio
|
||||
),
|
||||
{ # nolint
|
||||
|
|
@ -57,12 +51,6 @@ neural <- function(seed = 180199,
|
|||
distances <- geposan::distances[species %chin% species_ids &
|
||||
gene %chin% gene_ids]
|
||||
|
||||
# Only include species that have at least 25% of the included genes.
|
||||
distances[, species_n_genes := .N, by = species]
|
||||
distances <- distances[species_n_genes >=
|
||||
gene_requirement * length(gene_ids)]
|
||||
included_species <- distances[, unique(species)]
|
||||
|
||||
# Reshape data to put species into columns.
|
||||
data <- dcast(
|
||||
distances,
|
||||
|
|
@ -72,7 +60,7 @@ neural <- function(seed = 180199,
|
|||
|
||||
# Replace values that are still missing with mean values for the
|
||||
# species in question.
|
||||
data[, (included_species) := lapply(included_species, \(species) {
|
||||
data[, (species_ids) := lapply(species_ids, \(species) {
|
||||
species <- get(species)
|
||||
species[is.na(species)] <- mean(species, na.rm = TRUE)
|
||||
species
|
||||
|
|
@ -129,7 +117,7 @@ neural <- function(seed = 180199,
|
|||
# Step 3: Create, train and apply neural network.
|
||||
# -----------------------------------------------
|
||||
|
||||
data_matrix <- prepare_data(data, included_species)
|
||||
data_matrix <- prepare_data(data, species_ids)
|
||||
output_vars <- NULL
|
||||
|
||||
for (i in seq_along(networks)) {
|
||||
|
|
@ -138,14 +126,14 @@ neural <- function(seed = 180199,
|
|||
# Create a new model for each training session, because
|
||||
# the model would keep its state across training
|
||||
# sessions otherwise.
|
||||
model <- create_model(length(included_species))
|
||||
model <- create_model(length(species_ids))
|
||||
|
||||
# Train the model.
|
||||
fit <- train_model(
|
||||
model,
|
||||
network$training_data,
|
||||
network$validation_data,
|
||||
included_species
|
||||
species_ids
|
||||
)
|
||||
|
||||
# Apply the model.
|
||||
|
|
@ -180,7 +168,7 @@ neural <- function(seed = 180199,
|
|||
details = list(
|
||||
seed = seed,
|
||||
n_models = n_models,
|
||||
all_results = data[, !..included_species],
|
||||
all_results = data[, !..species_ids],
|
||||
networks = networks
|
||||
)
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue