mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-25 19:37:23 +02:00
preset: Filter species in addition to genes
This commit is contained in:
parent
9e96c54f23
commit
3217c9bd29
4 changed files with 49 additions and 48 deletions
|
|
@ -7,8 +7,6 @@
|
|||
#' final score will be the mean of the result of applying the different
|
||||
#' models. There should be at least two training sets. The analysis will only
|
||||
#' work, if there is at least one reference gene per training set.
|
||||
#' @param gene_requirement Minimum proportion of genes from the preset that a
|
||||
#' species has to have in order to be included in the models.
|
||||
#' @param control_ratio The proportion of random control genes that is included
|
||||
#' in the training data sets in addition to the reference genes. This should
|
||||
#' be a numeric value between 0.0 and 1.0.
|
||||
|
|
@ -16,10 +14,7 @@
|
|||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @export
|
||||
neural <- function(seed = 180199,
|
||||
n_models = 5,
|
||||
gene_requirement = 0.5,
|
||||
control_ratio = 0.5) {
|
||||
neural <- function(seed = 180199, n_models = 5, control_ratio = 0.5) {
|
||||
method(
|
||||
id = "neural",
|
||||
name = "Neural",
|
||||
|
|
@ -37,7 +32,6 @@ neural <- function(seed = 180199,
|
|||
reference_gene_ids,
|
||||
seed,
|
||||
n_models,
|
||||
gene_requirement,
|
||||
control_ratio
|
||||
),
|
||||
{ # nolint
|
||||
|
|
@ -57,12 +51,6 @@ neural <- function(seed = 180199,
|
|||
distances <- geposan::distances[species %chin% species_ids &
|
||||
gene %chin% gene_ids]
|
||||
|
||||
# Only include species that have at least 25% of the included genes.
|
||||
distances[, species_n_genes := .N, by = species]
|
||||
distances <- distances[species_n_genes >=
|
||||
gene_requirement * length(gene_ids)]
|
||||
included_species <- distances[, unique(species)]
|
||||
|
||||
# Reshape data to put species into columns.
|
||||
data <- dcast(
|
||||
distances,
|
||||
|
|
@ -72,7 +60,7 @@ neural <- function(seed = 180199,
|
|||
|
||||
# Replace values that are still missing with mean values for the
|
||||
# species in question.
|
||||
data[, (included_species) := lapply(included_species, \(species) {
|
||||
data[, (species_ids) := lapply(species_ids, \(species) {
|
||||
species <- get(species)
|
||||
species[is.na(species)] <- mean(species, na.rm = TRUE)
|
||||
species
|
||||
|
|
@ -129,7 +117,7 @@ neural <- function(seed = 180199,
|
|||
# Step 3: Create, train and apply neural network.
|
||||
# -----------------------------------------------
|
||||
|
||||
data_matrix <- prepare_data(data, included_species)
|
||||
data_matrix <- prepare_data(data, species_ids)
|
||||
output_vars <- NULL
|
||||
|
||||
for (i in seq_along(networks)) {
|
||||
|
|
@ -138,14 +126,14 @@ neural <- function(seed = 180199,
|
|||
# Create a new model for each training session, because
|
||||
# the model would keep its state across training
|
||||
# sessions otherwise.
|
||||
model <- create_model(length(included_species))
|
||||
model <- create_model(length(species_ids))
|
||||
|
||||
# Train the model.
|
||||
fit <- train_model(
|
||||
model,
|
||||
network$training_data,
|
||||
network$validation_data,
|
||||
included_species
|
||||
species_ids
|
||||
)
|
||||
|
||||
# Apply the model.
|
||||
|
|
@ -180,7 +168,7 @@ neural <- function(seed = 180199,
|
|||
details = list(
|
||||
seed = seed,
|
||||
n_models = n_models,
|
||||
all_results = data[, !..included_species],
|
||||
all_results = data[, !..species_ids],
|
||||
networks = networks
|
||||
)
|
||||
)
|
||||
|
|
|
|||
44
R/preset.R
44
R/preset.R
|
|
@ -3,16 +3,19 @@
|
|||
#' A preset is used to specify which methods and inputs should be used for an
|
||||
#' analysis. Note that the genes to process should normally include the
|
||||
#' reference genes to be able to assess the results later. The genes will be
|
||||
#' filtered based on how many species have data for them. Genes which only have
|
||||
#' orthologs for less than 25% of the input species will be excluded from the
|
||||
#' preset and the analyis. See the different method functions for the available
|
||||
#' methods: [clustering()], [correlation()], [neural()], [adjacency()] and
|
||||
#' [species_adjacency()].
|
||||
#' filtered based on how many species have data for them. Afterwards, species
|
||||
#' that still have many missing genes will also be excluded. See the different
|
||||
#' method functions for the available methods: [clustering()], [correlation()],
|
||||
#' [neural()], [adjacency()] and [species_adjacency()].
|
||||
#'
|
||||
#' @param reference_gene_ids IDs of reference genes to compare to.
|
||||
#' @param methods List of methods to apply.
|
||||
#' @param species_ids IDs of species to include.
|
||||
#' @param gene_ids IDs of genes to screen.
|
||||
#' @param species_requirement The proportion of species a gene has to have
|
||||
#' orthologs in in order for the gene to qualify.
|
||||
#' @param gene_requirement The proportion of genes that a species has to have
|
||||
#' in order for the species to be included in the analysis.
|
||||
#'
|
||||
#' @return The preset to use with [analyze()].
|
||||
#'
|
||||
|
|
@ -20,21 +23,32 @@
|
|||
preset <- function(reference_gene_ids,
|
||||
methods = all_methods(),
|
||||
species_ids = geposan::species$id,
|
||||
gene_ids = geposan::genes$id) {
|
||||
# Count included species per gene.
|
||||
genes_n_species <- geposan::distances[
|
||||
species %chin% species_ids,
|
||||
.(n_species = .N),
|
||||
by = "gene"
|
||||
gene_ids = geposan::genes$id,
|
||||
species_requirement = 0.25,
|
||||
gene_requirement = 0.5) {
|
||||
# Prefilter distances.
|
||||
distances <- geposan::distances[
|
||||
species %chin% species_ids & gene %chin% gene_ids
|
||||
]
|
||||
|
||||
# Filter out genes with less than 25% existing orthologs.
|
||||
# Count included species per gene.
|
||||
genes_n_species <- distances[, .(n_species = .N), by = "gene"]
|
||||
|
||||
# Filter out genes with less too few existing orthologs.
|
||||
gene_ids_filtered <- genes_n_species[
|
||||
gene %chin% gene_ids &
|
||||
n_species >= 0.25 * length(species_ids),
|
||||
n_species >= species_requirement * length(species_ids),
|
||||
gene
|
||||
]
|
||||
|
||||
# Count included genes per species.
|
||||
species_n_genes <- geposan::distances[, .(n_genes = .N), by = "species"]
|
||||
|
||||
# Filter out species that have too few of the genes.
|
||||
species_ids_filtered <- species_n_genes[
|
||||
n_genes >= gene_requirement * length(gene_ids_filtered),
|
||||
species
|
||||
]
|
||||
|
||||
reference_gene_ids_excluded <- reference_gene_ids[
|
||||
!reference_gene_ids %chin% gene_ids_filtered
|
||||
]
|
||||
|
|
@ -65,7 +79,7 @@ preset <- function(reference_gene_ids,
|
|||
list(
|
||||
reference_gene_ids = sort(reference_gene_ids_included),
|
||||
methods = methods,
|
||||
species_ids = sort(species_ids),
|
||||
species_ids = sort(species_ids_filtered),
|
||||
gene_ids = sort(gene_ids_filtered)
|
||||
),
|
||||
class = "geposan_preset"
|
||||
|
|
|
|||
|
|
@ -4,12 +4,7 @@
|
|||
\alias{neural}
|
||||
\title{Find genes by training and applying a neural network.}
|
||||
\usage{
|
||||
neural(
|
||||
seed = 180199,
|
||||
n_models = 5,
|
||||
gene_requirement = 0.5,
|
||||
control_ratio = 0.5
|
||||
)
|
||||
neural(seed = 180199, n_models = 5, control_ratio = 0.5)
|
||||
}
|
||||
\arguments{
|
||||
\item{seed}{The seed will be used to make the results reproducible.}
|
||||
|
|
@ -21,9 +16,6 @@ final score will be the mean of the result of applying the different
|
|||
models. There should be at least two training sets. The analysis will only
|
||||
work, if there is at least one reference gene per training set.}
|
||||
|
||||
\item{gene_requirement}{Minimum proportion of genes from the preset that a
|
||||
species has to have in order to be included in the models.}
|
||||
|
||||
\item{control_ratio}{The proportion of random control genes that is included
|
||||
in the training data sets in addition to the reference genes. This should
|
||||
be a numeric value between 0.0 and 1.0.}
|
||||
|
|
|
|||
|
|
@ -8,7 +8,9 @@ preset(
|
|||
reference_gene_ids,
|
||||
methods = all_methods(),
|
||||
species_ids = geposan::species$id,
|
||||
gene_ids = geposan::genes$id
|
||||
gene_ids = geposan::genes$id,
|
||||
species_requirement = 0.25,
|
||||
gene_requirement = 0.5
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
|
|
@ -19,6 +21,12 @@ preset(
|
|||
\item{species_ids}{IDs of species to include.}
|
||||
|
||||
\item{gene_ids}{IDs of genes to screen.}
|
||||
|
||||
\item{species_requirement}{The proportion of species a gene has to have
|
||||
orthologs in in order for the gene to qualify.}
|
||||
|
||||
\item{gene_requirement}{The proportion of genes that a species has to have
|
||||
in order for the species to be included in the analysis.}
|
||||
}
|
||||
\value{
|
||||
The preset to use with \code{\link[=analyze]{analyze()}}.
|
||||
|
|
@ -27,9 +35,8 @@ The preset to use with \code{\link[=analyze]{analyze()}}.
|
|||
A preset is used to specify which methods and inputs should be used for an
|
||||
analysis. Note that the genes to process should normally include the
|
||||
reference genes to be able to assess the results later. The genes will be
|
||||
filtered based on how many species have data for them. Genes which only have
|
||||
orthologs for less than 25\% of the input species will be excluded from the
|
||||
preset and the analyis. See the different method functions for the available
|
||||
methods: \code{\link[=clustering]{clustering()}}, \code{\link[=correlation]{correlation()}}, \code{\link[=neural]{neural()}}, \code{\link[=adjacency]{adjacency()}} and
|
||||
\code{\link[=species_adjacency]{species_adjacency()}}.
|
||||
filtered based on how many species have data for them. Afterwards, species
|
||||
that still have many missing genes will also be excluded. See the different
|
||||
method functions for the available methods: \code{\link[=clustering]{clustering()}}, \code{\link[=correlation]{correlation()}},
|
||||
\code{\link[=neural]{neural()}}, \code{\link[=adjacency]{adjacency()}} and \code{\link[=species_adjacency]{species_adjacency()}}.
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue