mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
adjacency: Make distance estimation customizable
This commit is contained in:
parent
ac9894e988
commit
2ceda0691b
4 changed files with 109 additions and 71 deletions
148
R/adjacency.R
148
R/adjacency.R
|
|
@ -1,13 +1,36 @@
|
|||
#' Find the densest value in the data.
|
||||
#'
|
||||
#' This function assumes that data represents a continuous variable and finds
|
||||
#' a single value with the highest estimated density. This can be used to
|
||||
#' estimate the mode of the data. If there is only one value that value is
|
||||
#' returned. If multiple density maxima with the same density exist, their mean
|
||||
#' is returned.
|
||||
#'
|
||||
#' @param data The input data.
|
||||
#'
|
||||
#' @return The densest value of data.
|
||||
#'
|
||||
#' @export
|
||||
densest <- function(data) {
|
||||
as.numeric(if (length(data) <= 0) {
|
||||
NULL
|
||||
} else if (length(data) == 1) {
|
||||
data
|
||||
} else {
|
||||
density <- stats::density(data)
|
||||
mean(density$x[density$y == max(density$y)])
|
||||
})
|
||||
}
|
||||
|
||||
#' Score genes based on their proximity to the reference genes.
|
||||
#'
|
||||
#' This method finds the distance value with the maximum density for each gene
|
||||
#' (i.e. the mode of its estimated distribution). Genes are scored by comparing
|
||||
#' those distance values with the values of the reference genes.
|
||||
#' @param estimate A function that will be used to summarize the distance
|
||||
#' values for each gene. See [densest()] for the default implementation.
|
||||
#'
|
||||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @export
|
||||
adjacency <- function() {
|
||||
adjacency <- function(estimate = densest) {
|
||||
method(
|
||||
id = "adjacency",
|
||||
name = "Adjacency",
|
||||
|
|
@ -17,73 +40,64 @@ adjacency <- function() {
|
|||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
cached("adjacency", c(species_ids, gene_ids, reference_gene_ids), {
|
||||
# Get the virtual distance value with the highest density.
|
||||
compute_densest_distance <- function(distances) {
|
||||
if (length(distances) <= 2) {
|
||||
mean(distances)
|
||||
} else {
|
||||
d <- stats::density(distances)
|
||||
d$x[which.max(d$y)]
|
||||
}
|
||||
}
|
||||
|
||||
# Filter distances by species and gene and find the distance
|
||||
# with the highest density of values for each gene.
|
||||
data <- geposan::distances[
|
||||
species %chin% species_ids & gene %chin% gene_ids,
|
||||
.(densest_distance = compute_densest_distance(distance)),
|
||||
by = gene
|
||||
]
|
||||
|
||||
# Compute the absolute value of the difference between the
|
||||
# provided densest distance value in comparison to the mean of
|
||||
# the densest distances of the comparison genes.
|
||||
compute_difference <- function(densest_distance,
|
||||
comparison_ids) {
|
||||
# Get the mean of the densest distances of the reference
|
||||
# genes.
|
||||
mean_densest_distance <- data[
|
||||
gene %chin% comparison_ids,
|
||||
mean(densest_distance)
|
||||
cached(
|
||||
"adjacency",
|
||||
c(species_ids, gene_ids, reference_gene_ids, estimate),
|
||||
{ # nolint
|
||||
# Filter distances by species and gene and summarize each
|
||||
# gene's distance values using the estimation function.
|
||||
data <- geposan::distances[
|
||||
species %chin% species_ids & gene %chin% gene_ids,
|
||||
.(distance = estimate(distance)),
|
||||
by = gene
|
||||
]
|
||||
|
||||
abs(densest_distance - mean_densest_distance)
|
||||
}
|
||||
# Compute the absolute value of the difference between the
|
||||
# estimated distances of each gene to the reference genes.
|
||||
compute_difference <- function(distance,
|
||||
comparison_ids) {
|
||||
reference_distance <- data[
|
||||
gene %chin% comparison_ids,
|
||||
mean(distance)
|
||||
]
|
||||
|
||||
# Compute the differences to the reference genes.
|
||||
data[
|
||||
!gene %chin% reference_gene_ids,
|
||||
difference := compute_difference(
|
||||
densest_distance,
|
||||
reference_gene_ids
|
||||
abs(distance - reference_distance)
|
||||
}
|
||||
|
||||
# Compute the differences to the reference genes.
|
||||
data[
|
||||
!gene %chin% reference_gene_ids,
|
||||
difference := compute_difference(
|
||||
distance,
|
||||
reference_gene_ids
|
||||
)
|
||||
]
|
||||
|
||||
progress(0.5)
|
||||
|
||||
# Exclude the reference gene itself when computing its
|
||||
# difference.
|
||||
data[
|
||||
gene %chin% reference_gene_ids,
|
||||
difference := compute_difference(
|
||||
distance,
|
||||
reference_gene_ids[reference_gene_ids != gene]
|
||||
),
|
||||
by = gene
|
||||
]
|
||||
|
||||
# Compute the final score by normalizing the difference.
|
||||
data[, score := 1 - difference / max(difference)]
|
||||
|
||||
progress(1.0)
|
||||
|
||||
result(
|
||||
method = "adjacency",
|
||||
scores = data[, .(gene, score)],
|
||||
details = list(data = data)
|
||||
)
|
||||
]
|
||||
|
||||
progress(0.5)
|
||||
|
||||
# Exclude the reference gene itself when computing its
|
||||
# difference.
|
||||
data[
|
||||
gene %chin% reference_gene_ids,
|
||||
difference := compute_difference(
|
||||
densest_distance,
|
||||
reference_gene_ids[reference_gene_ids != gene]
|
||||
),
|
||||
by = gene
|
||||
]
|
||||
|
||||
# Compute the final score by normalizing the difference.
|
||||
data[, score := 1 - difference / max(difference)]
|
||||
|
||||
progress(1.0)
|
||||
|
||||
result(
|
||||
method = "adjacency",
|
||||
scores = data[, .(gene, score)],
|
||||
details = list(data = data)
|
||||
)
|
||||
})
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue