Allow to limit number of clusters for clusteriness

This commit is contained in:
Elias Projahn 2022-06-16 19:45:59 +02:00
parent 3df4ec5d89
commit 2529f35660
3 changed files with 21 additions and 2 deletions

View file

@ -9,6 +9,7 @@ S3method(print,geposan_validation)
export(adjacency)
export(all_methods)
export(analyze)
export(clusteriness)
export(clustering)
export(compare)
export(correlation)

View file

@ -12,7 +12,13 @@
#' relation to the previous one. For example, if `weight` is 0.7 (the
#' default), the first cluster will weigh 1.0, the second 0.7, the third 0.49
#' etc.
clusteriness <- function(data, span = 100000, weight = 0.7) {
#' @param n_clusters Maximum number of clusters that should be taken into
#' account. By default, all clusters will be regarded.
#'
#' @return A score between 0.0 and 1.0 summarizing how much the data clusters.
#'
#' @export
clusteriness <- function(data, span = 100000, weight = 0.7, n_clusters = NULL) {
n <- length(data)
# Return a score of 0.0 if there is just one or no value at all.
@ -31,6 +37,12 @@ clusteriness <- function(data, span = 100000, weight = 0.7) {
score <- 0.0
for (i in seq_along(cluster_sizes)) {
if (!is.null(n_clusters)) {
if (i > n_clusters) {
break
}
}
cluster_size <- cluster_sizes[i]
if (cluster_size >= 2) {

View file

@ -4,7 +4,7 @@
\alias{clusteriness}
\title{Perform a cluster analysis.}
\usage{
clusteriness(data, span = 1e+05, weight = 0.7)
clusteriness(data, span = 1e+05, weight = 0.7, n_clusters = NULL)
}
\arguments{
\item{data}{The values that should be scored.}
@ -15,6 +15,12 @@ clusteriness(data, span = 1e+05, weight = 0.7)
relation to the previous one. For example, if \code{weight} is 0.7 (the
default), the first cluster will weigh 1.0, the second 0.7, the third 0.49
etc.}
\item{n_clusters}{Maximum number of clusters that should be taken into
account. By default, all clusters will be regarded.}
}
\value{
A score between 0.0 and 1.0 summarizing how much the data clusters.
}
\description{
This function will cluster the data using \code{\link[stats:hclust]{stats::hclust()}} and