Properly access distance data

This commit is contained in:
Elias Projahn 2021-10-21 14:26:03 +02:00
parent c0a1d965d7
commit 21a5817988
5 changed files with 12 additions and 18 deletions

View file

@ -45,9 +45,8 @@ analyze <- function(preset, progress = NULL) {
#
# A method describes a way to perform a computation on gene distance data
# that results in a single score per gene. The function should accept the
# distances data, the preset to apply (see [preset()]) and an optional
# progress function (that may be called with a number between 0.0 and 1.0)
# as its parameters.
# preset to apply (see [preset()]) and an optional progress function (that
# may be called with a number between 0.0 and 1.0) as its parameters.
#
# The function should return a [data.table] with the following columns:
#
@ -62,19 +61,14 @@ analyze <- function(preset, progress = NULL) {
total_progress <- 0.0
method_count <- length(preset$method_ids)
results <- data.table(gene = genes$id)
results <- data.table(gene = preset$gene_ids)
for (method_id in preset$method_ids) {
method_progress <- if (!is.null(progress)) function(p) {
progress(total_progress + p / method_count)
}
method_results <- methods[[method_id]](
distances,
preset,
method_progress
)
method_results <- methods[[method_id]](preset, method_progress)
setnames(method_results, "score", method_id)
results <- merge(

View file

@ -36,11 +36,11 @@ clusteriness_priv <- function(data, height = 1000000) {
}
# Process genes clustering their distance to telomeres.
clusteriness <- function(distances, preset, progress = NULL) {
clusteriness <- function(preset, progress = NULL) {
results <- data.table(gene = preset$gene_ids)
# Prefilter the input data by species.
distances <- distances[species %chin% preset$species_ids]
distances <- geposan::distances[species %chin% preset$species_ids]
# Add an index for quickly accessing data per gene.
setkey(distances, gene)

View file

@ -1,12 +1,12 @@
# Compute the mean correlation coefficient comparing gene distances with a set
# of reference genes.
correlation <- function(distances, preset, progress = NULL) {
correlation <- function(preset, progress = NULL) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids
# Prefilter distances by species.
distances <- distances[species %chin% species_ids]
distances <- geposan::distances[species %chin% species_ids]
# Tranform data to get species as rows and genes as columns. We construct
# columns per species, because it requires fewer iterations, and transpose

View file

@ -1,7 +1,7 @@
# Find genes by training a neural network on reference position data.
#
# @param seed A seed to get reproducible results.
neural <- function(distances, preset, progress = NULL, seed = 448077) {
neural <- function(preset, progress = NULL, seed = 448077) {
species_ids <- preset$species_ids
reference_gene_ids <- preset$reference_gene_ids
@ -9,7 +9,7 @@ neural <- function(distances, preset, progress = NULL, seed = 448077) {
gene_count <- length(preset$gene_ids)
# Prefilter distances by species.
distances <- distances[species %chin% species_ids]
distances <- geposan::distances[species %chin% species_ids]
# Input data for the network. This contains the gene ID as an identifier
# as well as the per-species gene distances as input variables.

View file

@ -2,9 +2,9 @@
#
# A score will be given to each gene such that 0.0 corresponds to the maximal
# mean distance across all genes and 1.0 corresponds to a distance of 0.
proximity <- function(distances, preset, progress = NULL) {
proximity <- function(preset, progress = NULL) {
# Prefilter distances by species and gene.
distances <- distances[
distances <- geposan::distances[
species %chin% preset$species_ids & gene %chin% preset$gene_ids
]