mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 18:57:25 +01:00
Reimplement correlation with matrix based approach
This commit is contained in:
parent
e6bca4d515
commit
0eac84377d
1 changed files with 48 additions and 54 deletions
102
R/correlation.R
102
R/correlation.R
|
|
@ -1,79 +1,73 @@
|
|||
# Compute the mean correlation coefficient comparing gene distances with a set
|
||||
# of reference genes.
|
||||
correlation <- function(distances, preset, progress = NULL) {
|
||||
results <- data.table(gene = preset$gene_ids)
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
reference_count <- length(reference_gene_ids)
|
||||
|
||||
# Prefilter distances by species.
|
||||
distances <- distances[species %chin% preset$species_ids]
|
||||
distances <- distances[species %chin% species_ids]
|
||||
|
||||
# Add an index for quickly accessing data per gene.
|
||||
setkey(distances, gene)
|
||||
# Tranform data to get species as rows and genes as columns. We construct
|
||||
# columns per species, because it requires fewer iterations, and transpose
|
||||
# the table afterwards.
|
||||
|
||||
# Prepare the reference genes' data.
|
||||
reference_distances <- distances[gene %chin% reference_gene_ids]
|
||||
data <- data.table(gene = gene_ids)
|
||||
|
||||
genes_done <- 0
|
||||
genes_total <- length(preset$gene_ids)
|
||||
# Make a column containing distance data for each species.
|
||||
for (species_id in species_ids) {
|
||||
species_distances <- distances[species == species_id, .(gene, distance)]
|
||||
data <- merge(data, species_distances, all.x = TRUE)
|
||||
setnames(data, "distance", species_id)
|
||||
}
|
||||
|
||||
# Perform the correlation for one gene.
|
||||
compute <- function(gene_id) {
|
||||
gene_distances <- distances[gene_id]
|
||||
gene_species_count <- nrow(gene_distances)
|
||||
# Transpose to the desired format.
|
||||
data <- transpose(data, make.names = "gene")
|
||||
|
||||
# Return a score of 0.0 if there is just one or no value at all.
|
||||
if (gene_species_count <= 1) {
|
||||
return(0.0)
|
||||
}
|
||||
if (!is.null(progress)) progress(0.33)
|
||||
|
||||
# Buffer for the sum of correlation coefficients.
|
||||
correlation_sum <- 0
|
||||
# Take the reference data.
|
||||
reference_data <- data[, ..reference_gene_ids]
|
||||
|
||||
# Correlate with all reference genes but not with the gene itself.
|
||||
gene_reference_gene_ids <- reference_gene_ids[
|
||||
reference_gene_ids != gene_id
|
||||
]
|
||||
# Perform the correlation between all possible pairs.
|
||||
results <- stats::cor(
|
||||
data[, ..gene_ids],
|
||||
reference_data,
|
||||
use = "pairwise.complete.obs",
|
||||
method = "spearman"
|
||||
)
|
||||
|
||||
for (reference_gene_id in gene_reference_gene_ids) {
|
||||
data <- merge(
|
||||
gene_distances,
|
||||
reference_distances[reference_gene_id],
|
||||
by = "species"
|
||||
)
|
||||
results <- data.table(results, keep.rownames = TRUE)
|
||||
setnames(results, "rn", "gene")
|
||||
|
||||
# Skip this reference gene, if there are not enough value pairs.
|
||||
# This will lessen the final score, because it effectively
|
||||
# represents a correlation coefficient of 0.0.
|
||||
if (nrow(data) <= 1) {
|
||||
next
|
||||
}
|
||||
# Remove correlations between the reference genes themselves.
|
||||
for (reference_gene_id in reference_gene_ids) {
|
||||
column <- quote(reference_gene_id)
|
||||
results[gene == reference_gene_id, eval(column) := NA]
|
||||
}
|
||||
|
||||
# Order data by the reference gene's distance to get a monotonic
|
||||
# relation.
|
||||
setorder(data, distance.y)
|
||||
if (!is.null(progress)) progress(0.66)
|
||||
|
||||
correlation <- abs(stats::cor(
|
||||
data[, distance.x], data[, distance.y],
|
||||
method = "spearman"
|
||||
))
|
||||
# Compute the final score as the mean of known correlation scores. Negative
|
||||
# correlations will correctly lessen the score, which will be clamped to
|
||||
# zero as its lower bound. Genes with no possible correlations at all will
|
||||
# be assumed to have a score of 0.0.
|
||||
|
||||
# If the correlation is NA, this will effectively mean 0.0.
|
||||
if (!is.na(correlation)) {
|
||||
correlation_sum <- correlation_sum + correlation
|
||||
}
|
||||
}
|
||||
compute_score <- function(scores) {
|
||||
score <- mean(scores, na.rm = TRUE)
|
||||
|
||||
# Compute the score as the mean correlation coefficient.
|
||||
score <- correlation_sum / length(gene_reference_gene_ids)
|
||||
|
||||
if (!is.null(progress)) {
|
||||
genes_done <<- genes_done + 1
|
||||
progress(genes_done / genes_total)
|
||||
if (is.na(score) | score < 0.0) {
|
||||
score <- 0.0
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
|
||||
results[, score := compute(gene), by = 1:nrow(results)]
|
||||
results[,
|
||||
score := compute_score(as.matrix(.SD)),
|
||||
.SDcols = reference_gene_ids,
|
||||
by = gene
|
||||
]
|
||||
|
||||
results[, .(gene, score)]
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue