mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-26 10:47:25 +01:00
Remove species adjacency method
This commit is contained in:
parent
ab545a415c
commit
0ae6836d86
6 changed files with 0 additions and 200 deletions
|
|
@ -27,6 +27,5 @@ export(preset)
|
||||||
export(proximity)
|
export(proximity)
|
||||||
export(ranking)
|
export(ranking)
|
||||||
export(result)
|
export(result)
|
||||||
export(species_adjacency)
|
|
||||||
export(validate)
|
export(validate)
|
||||||
import(data.table)
|
import(data.table)
|
||||||
|
|
|
||||||
|
|
@ -37,7 +37,6 @@ all_methods <- function() {
|
||||||
correlation(),
|
correlation(),
|
||||||
neural(),
|
neural(),
|
||||||
adjacency(),
|
adjacency(),
|
||||||
species_adjacency(),
|
|
||||||
proximity()
|
proximity()
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -39,8 +39,6 @@ densest <- function(data) {
|
||||||
#'
|
#'
|
||||||
#' @return An object of class `geposan_method`.
|
#' @return An object of class `geposan_method`.
|
||||||
#'
|
#'
|
||||||
#' @seealso [species_adjacency()]
|
|
||||||
#'
|
|
||||||
#' @export
|
#' @export
|
||||||
adjacency <- function(id = "adjacency",
|
adjacency <- function(id = "adjacency",
|
||||||
name = "Adjacency",
|
name = "Adjacency",
|
||||||
|
|
|
||||||
|
|
@ -1,156 +0,0 @@
|
||||||
#' Score genes based on their adjacency to the reference genes within species.
|
|
||||||
#'
|
|
||||||
#' For each gene and species, the method will first combine the gene's distances
|
|
||||||
#' to the reference genes within that species. Afterwards, the results are
|
|
||||||
#' summarized across species and determine the gene's score.
|
|
||||||
#'
|
|
||||||
#' @param id Unique ID for the method and its results.
|
|
||||||
#' @param name Human readable name for the method.
|
|
||||||
#' @param description Method description.
|
|
||||||
#' @param distance_estimate Function for combining the distance differences
|
|
||||||
#' within one species.
|
|
||||||
#' @param summarize Function for summarizing the distance values across species.
|
|
||||||
#'
|
|
||||||
#' @return An object of class `geposan_method`.
|
|
||||||
#'
|
|
||||||
#' @seealso [adjacency()]
|
|
||||||
#'
|
|
||||||
#' @export
|
|
||||||
species_adjacency <- function(id = "species_adjacency",
|
|
||||||
name = "Species adj.",
|
|
||||||
description = "Species adjacency",
|
|
||||||
distance_estimate = stats::median,
|
|
||||||
summarize = stats::median) {
|
|
||||||
method(
|
|
||||||
id = id,
|
|
||||||
name = name,
|
|
||||||
description = description,
|
|
||||||
function(preset, progress) {
|
|
||||||
species_ids <- preset$species_ids
|
|
||||||
gene_ids <- preset$gene_ids
|
|
||||||
reference_gene_ids <- preset$reference_gene_ids
|
|
||||||
|
|
||||||
cached(
|
|
||||||
"species_adjacency",
|
|
||||||
c(
|
|
||||||
species_ids,
|
|
||||||
gene_ids,
|
|
||||||
reference_gene_ids,
|
|
||||||
distance_estimate,
|
|
||||||
summarize
|
|
||||||
),
|
|
||||||
{ # nolint
|
|
||||||
# Prefilter distances.
|
|
||||||
data <- geposan::distances[
|
|
||||||
species %chin% species_ids & gene %chin% gene_ids
|
|
||||||
]
|
|
||||||
|
|
||||||
progress_state <- 0.0
|
|
||||||
progress_step <- 0.9 / length(species_ids)
|
|
||||||
|
|
||||||
# Iterate through all species and find the distance
|
|
||||||
# estimates within that species.
|
|
||||||
for (species_id in species_ids) {
|
|
||||||
# For all genes, compute the distance to one reference
|
|
||||||
# gene at a time in one go.
|
|
||||||
for (reference_gene_id in reference_gene_ids) {
|
|
||||||
comparison_distance <- data[
|
|
||||||
species == species_id &
|
|
||||||
gene == reference_gene_id,
|
|
||||||
distance
|
|
||||||
]
|
|
||||||
|
|
||||||
column <- quote(reference_gene_id)
|
|
||||||
|
|
||||||
if (length(comparison_distance) != 1) {
|
|
||||||
# If we don't have a comparison distance, we
|
|
||||||
# can't compute a difference. This happens, if
|
|
||||||
# the species doesn't have the reference gene.
|
|
||||||
data[
|
|
||||||
species == species_id &
|
|
||||||
gene %chin% gene_ids,
|
|
||||||
eval(column) := NA_integer_
|
|
||||||
]
|
|
||||||
} else {
|
|
||||||
data[
|
|
||||||
species == species_id &
|
|
||||||
gene %chin% gene_ids,
|
|
||||||
eval(column) :=
|
|
||||||
abs(distance - comparison_distance)
|
|
||||||
]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
# Combine the distances to the different reference genes
|
|
||||||
# into one value using the provided function.
|
|
||||||
data[
|
|
||||||
species == species_id &
|
|
||||||
gene %chin% gene_ids,
|
|
||||||
combined_distance := as.numeric(
|
|
||||||
distance_estimate(stats::na.omit(
|
|
||||||
# Convert the data.table subset into a
|
|
||||||
# vector to get the correct na.omit
|
|
||||||
# behavior.
|
|
||||||
as.matrix(.SD)[1, ]
|
|
||||||
))
|
|
||||||
),
|
|
||||||
.SDcols = reference_gene_ids,
|
|
||||||
by = gene
|
|
||||||
]
|
|
||||||
|
|
||||||
progress_state <- progress_state + progress_step
|
|
||||||
progress(progress_state)
|
|
||||||
}
|
|
||||||
|
|
||||||
progress(0.9)
|
|
||||||
|
|
||||||
# Remove the distances between the reference genes.
|
|
||||||
for (reference_gene_id in reference_gene_ids) {
|
|
||||||
column <- quote(reference_gene_id)
|
|
||||||
data[gene == reference_gene_id, eval(column) := NA]
|
|
||||||
}
|
|
||||||
|
|
||||||
# Recompute the combined distance for the reference genes.
|
|
||||||
data[
|
|
||||||
gene %chin% reference_gene_ids,
|
|
||||||
combined_distance := as.numeric(
|
|
||||||
distance_estimate(stats::na.omit(
|
|
||||||
as.matrix(.SD)[1, ]
|
|
||||||
))
|
|
||||||
),
|
|
||||||
.SDcols = reference_gene_ids,
|
|
||||||
by = list(species, gene)
|
|
||||||
]
|
|
||||||
|
|
||||||
# Combine the distances into one value.
|
|
||||||
results <- data[,
|
|
||||||
.(
|
|
||||||
summarized_distances = as.numeric(
|
|
||||||
summarize(stats::na.omit(combined_distance))
|
|
||||||
)
|
|
||||||
),
|
|
||||||
by = gene
|
|
||||||
]
|
|
||||||
|
|
||||||
# Compute the final score by normalizing the difference.
|
|
||||||
results[
|
|
||||||
,
|
|
||||||
score := 1 - summarized_distances /
|
|
||||||
max(summarized_distances)
|
|
||||||
]
|
|
||||||
|
|
||||||
progress(1.0)
|
|
||||||
|
|
||||||
result(
|
|
||||||
method = "species_adjacency",
|
|
||||||
scores = results[, .(gene, score)],
|
|
||||||
details = list(
|
|
||||||
data = data,
|
|
||||||
results = results
|
|
||||||
)
|
|
||||||
)
|
|
||||||
}
|
|
||||||
)
|
|
||||||
}
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
@ -34,6 +34,3 @@ In this case, the distance data that is available for one gene is first
|
||||||
combined. The resulting value is compared to the reference genes and
|
combined. The resulting value is compared to the reference genes and
|
||||||
determines the gene's score in relation to other genes.
|
determines the gene's score in relation to other genes.
|
||||||
}
|
}
|
||||||
\seealso{
|
|
||||||
\code{\link[=species_adjacency]{species_adjacency()}}
|
|
||||||
}
|
|
||||||
|
|
|
||||||
|
|
@ -1,37 +0,0 @@
|
||||||
% Generated by roxygen2: do not edit by hand
|
|
||||||
% Please edit documentation in R/method_species_adjacency.R
|
|
||||||
\name{species_adjacency}
|
|
||||||
\alias{species_adjacency}
|
|
||||||
\title{Score genes based on their adjacency to the reference genes within species.}
|
|
||||||
\usage{
|
|
||||||
species_adjacency(
|
|
||||||
id = "species_adjacency",
|
|
||||||
name = "Species adj.",
|
|
||||||
description = "Species adjacency",
|
|
||||||
distance_estimate = stats::median,
|
|
||||||
summarize = stats::median
|
|
||||||
)
|
|
||||||
}
|
|
||||||
\arguments{
|
|
||||||
\item{id}{Unique ID for the method and its results.}
|
|
||||||
|
|
||||||
\item{name}{Human readable name for the method.}
|
|
||||||
|
|
||||||
\item{description}{Method description.}
|
|
||||||
|
|
||||||
\item{distance_estimate}{Function for combining the distance differences
|
|
||||||
within one species.}
|
|
||||||
|
|
||||||
\item{summarize}{Function for summarizing the distance values across species.}
|
|
||||||
}
|
|
||||||
\value{
|
|
||||||
An object of class \code{geposan_method}.
|
|
||||||
}
|
|
||||||
\description{
|
|
||||||
For each gene and species, the method will first combine the gene's distances
|
|
||||||
to the reference genes within that species. Afterwards, the results are
|
|
||||||
summarized across species and determine the gene's score.
|
|
||||||
}
|
|
||||||
\seealso{
|
|
||||||
\code{\link[=adjacency]{adjacency()}}
|
|
||||||
}
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue