mirror of
https://github.com/johrpan/geposan.git
synced 2025-10-25 19:37:23 +02:00
Implement random forest model method
This commit is contained in:
parent
6cc9196a0d
commit
038208bfbd
3 changed files with 227 additions and 1 deletions
|
|
@ -37,7 +37,8 @@ all_methods <- function() {
|
|||
adjacency(),
|
||||
clustering(),
|
||||
correlation(),
|
||||
neural()
|
||||
neural(),
|
||||
random_forest()
|
||||
)
|
||||
}
|
||||
|
||||
|
|
|
|||
183
R/method_random_forest.R
Normal file
183
R/method_random_forest.R
Normal file
|
|
@ -0,0 +1,183 @@
|
|||
#' Predict scores using a random forest.
|
||||
#'
|
||||
#' @param id Unique ID for the method and its results.
|
||||
#' @param name Human readable name for the method.
|
||||
#' @param description Method description.
|
||||
#' @param seed The seed will be used to make the results reproducible.
|
||||
#' @param n_models This number specifies how many sets of training data should
|
||||
#' be created. For each set, there will be a model trained on the remaining
|
||||
#' training data and validated using this set. For non-training genes, the
|
||||
#' final score will be the mean of the result of applying the different
|
||||
#' models. There should be at least two training sets. The analysis will only
|
||||
#' work, if there is at least one reference gene per training set. By default,
|
||||
#' one model per reference gene will be used.
|
||||
#' @param control_ratio The proportion of random control genes that is included
|
||||
#' in the training data sets in addition to the reference genes. This should
|
||||
#' be a numeric value between 0.0 and 1.0.
|
||||
#'
|
||||
#' @return An object of class `geposan_method`.
|
||||
#'
|
||||
#' @export
|
||||
random_forest <- function(id = "rforest",
|
||||
name = "Random forest",
|
||||
description = "Assessment by random forest",
|
||||
seed = 180199,
|
||||
n_models = NULL,
|
||||
control_ratio = 0.75) {
|
||||
method(
|
||||
id = id,
|
||||
name = name,
|
||||
description = description,
|
||||
function(preset, progress) {
|
||||
species_ids <- preset$species_ids
|
||||
gene_ids <- preset$gene_ids
|
||||
reference_gene_ids <- preset$reference_gene_ids
|
||||
|
||||
reference_count <- length(reference_gene_ids)
|
||||
if (is.null(n_models)) {
|
||||
n_models = reference_count
|
||||
}
|
||||
|
||||
cached(
|
||||
id,
|
||||
c(
|
||||
species_ids,
|
||||
gene_ids,
|
||||
reference_gene_ids,
|
||||
seed,
|
||||
n_models,
|
||||
control_ratio
|
||||
),
|
||||
{ # nolint
|
||||
stopifnot(n_models %in% 2:reference_count)
|
||||
|
||||
control_count <- ceiling(reference_count * control_ratio /
|
||||
(1 - control_ratio))
|
||||
|
||||
# Make results reproducible.
|
||||
set.seed(seed)
|
||||
|
||||
# Step 1: Prepare input data.
|
||||
# ---------------------------
|
||||
|
||||
# Prefilter distances by species and gene.
|
||||
distances <- geposan::distances[species %chin% species_ids &
|
||||
gene %chin% gene_ids]
|
||||
|
||||
# Reshape data to put species into columns.
|
||||
data <- dcast(
|
||||
distances,
|
||||
gene ~ species,
|
||||
value.var = "distance"
|
||||
)
|
||||
|
||||
# Replace values that are still missing with mean values for the
|
||||
# species in question.
|
||||
data[, (species_ids) := lapply(species_ids, \(species) {
|
||||
species <- get(species)
|
||||
species[is.na(species)] <- mean(species, na.rm = TRUE)
|
||||
species
|
||||
})]
|
||||
|
||||
progress(0.1)
|
||||
|
||||
# Step 2: Prepare training data.
|
||||
# ------------------------------
|
||||
|
||||
# Take out the reference data.
|
||||
reference_data <- data[gene %chin% reference_gene_ids]
|
||||
reference_data[, score := 1.0]
|
||||
|
||||
# Draw control data from the remaining genes.
|
||||
control_data <- data[!gene %chin% reference_gene_ids][
|
||||
sample(.N, control_count)
|
||||
]
|
||||
control_data[, score := 0.0]
|
||||
|
||||
# Randomly distribute the indices of the reference and control genes
|
||||
# across one bucket per model.
|
||||
|
||||
reference_sets <- split(
|
||||
sample(reference_count),
|
||||
seq_len(reference_count) %% n_models
|
||||
)
|
||||
|
||||
control_sets <- split(
|
||||
sample(control_count),
|
||||
seq_len(control_count) %% n_models
|
||||
)
|
||||
|
||||
# Prepare the data for each model. Each model will have one pair of
|
||||
# reference and control gene sets left out for validation. The
|
||||
# training data consists of all the remaining sets.
|
||||
models <- lapply(seq_len(n_models), \(index) {
|
||||
training_data <- rbindlist(list(
|
||||
reference_data[!reference_sets[[index]]],
|
||||
control_data[!control_sets[[index]]]
|
||||
))
|
||||
|
||||
validation_data <- rbindlist(list(
|
||||
reference_data[reference_sets[[index]]],
|
||||
control_data[control_sets[[index]]]
|
||||
))
|
||||
|
||||
list(
|
||||
training_data = training_data,
|
||||
validation_data = validation_data
|
||||
)
|
||||
})
|
||||
|
||||
# Step 3: Create, train and apply the models.
|
||||
# -------------------------------------------
|
||||
|
||||
output_vars <- NULL
|
||||
|
||||
for (i in seq_along(models)) {
|
||||
model <- models[[i]]
|
||||
forest <- ranger::ranger(
|
||||
x = model$training_data[, ..species_ids],
|
||||
y = model$training_data$score
|
||||
)
|
||||
|
||||
# TODO: Make use of validation data.
|
||||
|
||||
# Apply the model.
|
||||
data[, new_score := stats::predict(forest, data)$predictions]
|
||||
|
||||
# Remove the values of the training data itself.
|
||||
data[gene %chin% model$training_data$gene, new_score := NA]
|
||||
|
||||
output_var <- sprintf("score%i", i)
|
||||
setnames(data, "new_score", output_var)
|
||||
output_vars <- c(output_vars, output_var)
|
||||
|
||||
# Store the details.
|
||||
models[[i]]$forest <- forest
|
||||
|
||||
progress(0.1 + i * (0.9 / n_models))
|
||||
}
|
||||
|
||||
# Compute the final score as the mean score.
|
||||
data[,
|
||||
score := mean(as.numeric(.SD), na.rm = TRUE),
|
||||
.SDcols = output_vars,
|
||||
by = gene
|
||||
]
|
||||
|
||||
progress(1.0)
|
||||
|
||||
result(
|
||||
method = id,
|
||||
scores = data[, .(gene, score)],
|
||||
details = list(
|
||||
seed = seed,
|
||||
n_models = n_models,
|
||||
all_results = data[, !..species_ids],
|
||||
models = models
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
42
man/random_forest.Rd
Normal file
42
man/random_forest.Rd
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/method_random_forest.R
|
||||
\name{random_forest}
|
||||
\alias{random_forest}
|
||||
\title{Predict scores using a random forest.}
|
||||
\usage{
|
||||
random_forest(
|
||||
id = "rforest",
|
||||
name = "Random forest",
|
||||
description = "Assessment by random forest",
|
||||
seed = 180199,
|
||||
n_models = NULL,
|
||||
control_ratio = 0.75
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{id}{Unique ID for the method and its results.}
|
||||
|
||||
\item{name}{Human readable name for the method.}
|
||||
|
||||
\item{description}{Method description.}
|
||||
|
||||
\item{seed}{The seed will be used to make the results reproducible.}
|
||||
|
||||
\item{n_models}{This number specifies how many sets of training data should
|
||||
be created. For each set, there will be a model trained on the remaining
|
||||
training data and validated using this set. For non-training genes, the
|
||||
final score will be the mean of the result of applying the different
|
||||
models. There should be at least two training sets. The analysis will only
|
||||
work, if there is at least one reference gene per training set. By default,
|
||||
one model per reference gene will be used.}
|
||||
|
||||
\item{control_ratio}{The proportion of random control genes that is included
|
||||
in the training data sets in addition to the reference genes. This should
|
||||
be a numeric value between 0.0 and 1.0.}
|
||||
}
|
||||
\value{
|
||||
An object of class \code{geposan_method}.
|
||||
}
|
||||
\description{
|
||||
Predict scores using a random forest.
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue