geposan/R/plots.R

442 lines
12 KiB
R
Raw Normal View History

2022-03-01 15:49:04 +01:00
#' Base color for the plots.
#' @noRd
base_color <- function() "#1964bf"
#' Transparent version of the base color.
#' @noRd
base_color_transparent <- function() "#1964bf80"
#' Color palette for gene sets.
#' @noRd
gene_set_color <- function(index) {
c("#FF7F00", "#4DAF4A", "#984EA3")[index]
}
2021-11-15 15:12:13 +01:00
#' Plot gene positions.
#'
#' This function requires the package `plotly`.
#'
#' @param species_ids IDs of species to show in the plot.
#' @param gene_sets A list of gene sets (containing vectors of gene IDs) that
2021-12-02 17:23:18 +01:00
#' will be highlighted in the plot. The names will be used as labels.
2021-11-15 15:12:13 +01:00
#'
#' @export
2021-12-02 17:23:18 +01:00
plot_positions <- function(species_ids, gene_sets) {
2021-11-15 15:12:13 +01:00
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
2021-12-02 17:23:18 +01:00
# Prefilter data by species.
data <- geposan::distances[species %chin% species_ids]
2021-11-15 15:12:13 +01:00
2021-12-03 11:33:51 +01:00
species_max_distance <- data[,
.(max_distance = max(distance)),
by = species
]
2021-11-15 15:12:13 +01:00
2021-12-02 17:23:18 +01:00
# Prefilter species.
2021-11-15 15:12:13 +01:00
species <- geposan::species[id %chin% species_ids]
2022-03-01 15:49:04 +01:00
plot <- plotly::plot_ly() |>
2021-12-02 17:23:18 +01:00
plotly::layout(
xaxis = list(
title = "Species",
tickvals = species$id,
ticktext = species$name
),
2021-12-03 11:33:51 +01:00
yaxis = list(title = "Distance to telomeres [Bp]"),
bargap = 0.9
2022-05-17 21:48:30 +02:00
) |>
plotly::add_bars(
2021-12-03 11:33:51 +01:00
data = species_max_distance,
x = ~species,
y = ~max_distance,
2022-03-01 15:49:04 +01:00
name = "All genes",
marker = list(color = base_color())
2021-12-02 17:23:18 +01:00
)
if (length(gene_sets) > 0) {
# Include gene information which will be used for labeling
gene_set_data <- merge(
data[gene %chin% unlist(gene_sets)],
geposan::genes,
by.x = "gene",
by.y = "id"
)
2022-03-01 15:49:04 +01:00
index <- 1
2021-12-02 17:23:18 +01:00
for (gene_set_name in names(gene_sets)) {
gene_set <- gene_sets[[gene_set_name]]
plot <- plot |> plotly::add_markers(
data = gene_set_data[gene %chin% gene_set],
x = ~species,
y = ~distance,
text = ~name,
2022-03-01 15:49:04 +01:00
name = gene_set_name,
marker = list(
size = 10,
color = gene_set_color(index)
)
2021-12-02 17:23:18 +01:00
)
2022-03-01 15:49:04 +01:00
index <- index + 1
2021-12-02 17:23:18 +01:00
}
2021-11-15 15:12:13 +01:00
}
2021-12-02 17:23:18 +01:00
plot
2021-11-15 15:12:13 +01:00
}
2021-12-02 15:28:03 +01:00
#' Plot a side-by-side comparison of multiple rankings.
#'
#' Each ranking's scores will be shown as a vertical violin plot without any
#' additional markings. The gene sets will be shown as markers on top of the
#' density visualization.
#'
#' This function requires the package `plotly`.
#'
#' @param rankings A named list of rankings to display. The names will be shown
#' as labels in the plot.
#' @param gene_sets A named list of vectors of gene IDs to highlight. The names
#' will be used to distinguish the sets and in the legend.
#'
#' @export
plot_rankings <- function(rankings, gene_sets) {
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
2022-03-01 15:49:04 +01:00
plot <- plotly::plot_ly() |>
2021-12-02 15:28:03 +01:00
plotly::layout(
2021-12-02 17:23:18 +01:00
xaxis = list(tickvals = names(rankings)),
2021-12-02 15:28:03 +01:00
yaxis = list(title = "Score")
)
is_first <- TRUE
for (ranking_name in names(rankings)) {
ranking <- rankings[[ranking_name]]
plot <- plot |> plotly::add_trace(
data = ranking,
x = ranking_name,
y = ~score,
2022-03-01 15:49:04 +01:00
name = "All genes",
2021-12-02 15:28:03 +01:00
type = "violin",
spanmode = "hard",
points = FALSE,
showlegend = is_first,
2022-03-01 15:49:04 +01:00
hoverinfo = "skip",
line = list(color = base_color()),
fillcolor = base_color_transparent()
2021-12-02 15:28:03 +01:00
)
2021-12-02 17:23:18 +01:00
if (length(gene_sets) > 0) {
gene_set_data <- merge(
ranking[gene %chin% unlist(gene_sets)],
geposan::genes,
by.x = "gene",
by.y = "id"
2021-12-02 15:28:03 +01:00
)
2021-12-02 17:23:18 +01:00
2022-03-01 15:49:04 +01:00
index <- 1
2021-12-02 17:23:18 +01:00
for (gene_set_name in names(gene_sets)) {
gene_set <- gene_sets[[gene_set_name]]
plot <- plot |> plotly::add_markers(
data = gene_set_data[gene %chin% gene_set],
x = ranking_name,
y = ~score,
2022-03-01 15:49:04 +01:00
name = gene_set_name,
text = ~name,
customdata = ~percentile,
hovertemplate = paste0(
"<b>%{text}</b><br>",
"Score: %{y:.3}<br>",
"Percentile: %{customdata:.2%}",
"<extra></extra>"
),
2021-12-02 17:23:18 +01:00
showlegend = is_first,
2022-03-01 15:49:04 +01:00
marker = list(
size = 10,
color = gene_set_color(index)
)
2021-12-02 17:23:18 +01:00
)
2022-03-01 15:49:04 +01:00
index <- index + 1
2021-12-02 17:23:18 +01:00
}
2021-12-02 15:28:03 +01:00
}
is_first <- FALSE
}
plot
}
2021-11-06 13:03:36 +01:00
#' Plot a ranking as a scatter plot of scores.
#'
#' This function requires the package `plotly`.
#'
#' @param ranking The ranking to visualize.
2021-12-02 17:23:18 +01:00
#' @param gene_sets A named list of gene sets (containing vectors of gene IDs)
#' that will be highlighted in the plot. The names will be used in the legend.
#' @param max_rank The maximum rank of included genes. All genes that are ranked
#' lower will appear greyed out.
2021-11-06 13:03:36 +01:00
#'
#' @seealso ranking()
#'
#' @export
2021-12-02 17:23:18 +01:00
plot_scores <- function(ranking, gene_sets = NULL, max_rank = NULL) {
2021-11-06 13:03:36 +01:00
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
2021-12-06 11:17:11 +01:00
# To speed up rendering, don't show every single gene.
n_ranks <- nrow(ranking)
sample_ranking <- ranking[seq(1, n_ranks, 5)]
2021-12-06 11:17:11 +01:00
2022-03-01 15:49:04 +01:00
plot <- plotly::plot_ly() |>
2021-12-06 11:17:11 +01:00
plotly::add_lines(
data = sample_ranking,
x = ~percentile,
2021-11-06 13:03:36 +01:00
y = ~score,
2022-03-01 15:49:04 +01:00
name = "All genes",
2021-12-06 11:17:11 +01:00
hoverinfo = "skip",
2022-03-01 15:49:04 +01:00
line = list(width = 4, color = base_color())
2021-11-06 13:03:36 +01:00
) |>
plotly::layout(
xaxis = list(
title = "Percentile",
tickformat = ".0%"
),
2021-11-06 13:03:36 +01:00
yaxis = list(title = "Score")
)
if (length(gene_sets) > 0) {
# Include gene information which will be used for labeling
2021-11-06 13:22:57 +01:00
gene_set_data <- merge(
2021-12-02 17:23:18 +01:00
ranking[gene %chin% unlist(gene_sets)],
2021-11-06 13:22:57 +01:00
geposan::genes,
by.x = "gene",
by.y = "id"
)
2021-11-06 13:03:36 +01:00
2022-03-01 15:49:04 +01:00
index <- 1
2021-12-02 17:23:18 +01:00
for (gene_set_name in names(gene_sets)) {
gene_set <- gene_sets[[gene_set_name]]
plot <- plot |> plotly::add_markers(
data = gene_set_data[gene %chin% gene_set],
x = ~percentile,
2021-12-02 17:23:18 +01:00
y = ~score,
2022-03-01 15:49:04 +01:00
name = gene_set_name,
text = ~name,
customdata = ~rank,
hovertemplate = paste0(
"<b>%{text}</b><br>",
"Score: %{y:.3}<br>",
"Rank: %{customdata}<br>",
"Percentile: %{x:.2%}",
"<extra></extra>"
),
2022-03-01 15:49:04 +01:00
marker = list(
size = 10,
color = gene_set_color(index)
)
2021-12-02 17:23:18 +01:00
)
2022-03-01 15:49:04 +01:00
index <- index + 1
2021-12-02 17:23:18 +01:00
}
2021-11-06 13:03:36 +01:00
}
2021-11-15 09:21:37 +01:00
if (!is.null(max_rank)) {
first_not_included_rank <- max_rank + 1
last_rank <- ranking[, .N]
if (first_not_included_rank <= last_rank) {
plot <- plot |> plotly::layout(
shapes = list(
type = "rect",
fillcolor = "black",
opacity = 0.1,
x0 = 1 - first_not_included_rank / n_ranks,
x1 = 1 - last_rank / n_ranks,
2021-11-15 09:21:37 +01:00
y0 = 0.0,
y1 = 1.0
)
)
}
}
2021-11-06 13:03:36 +01:00
plot
}
#' Visualize a ranking by comparing gene sets in a boxplot.
#'
#' This function requires the package `plotly`.
#'
#' @param ranking The ranking to visualize.
2021-12-02 17:23:18 +01:00
#' @param gene_sets A named list of gene sets (containing vectors of gene IDs)
#' that will be shown as separate boxes. The names will be used as labels.
2021-11-06 13:03:36 +01:00
#'
#' @seealso ranking()
#'
#' @export
2021-12-02 17:23:18 +01:00
plot_boxplot <- function(ranking, gene_sets = NULL) {
2021-11-06 13:03:36 +01:00
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
2022-03-01 15:49:04 +01:00
plot <- plotly::plot_ly() |>
2021-12-02 17:23:18 +01:00
plotly::add_boxplot(
data = ranking,
x = "All genes",
y = ~score,
2022-03-01 15:49:04 +01:00
name = "All genes",
showlegend = FALSE,
line = list(color = base_color())
2021-12-02 17:23:18 +01:00
) |>
plotly::layout(
xaxis = list(tickvals = c("All genes", names(gene_sets))),
yaxis = list(title = "Score")
)
if (length(gene_sets) > 0) {
2022-03-01 15:49:04 +01:00
index <- 1
2021-12-02 17:23:18 +01:00
for (gene_set_name in names(gene_sets)) {
gene_set <- gene_sets[[gene_set_name]]
2021-11-06 13:03:36 +01:00
2021-12-02 17:23:18 +01:00
plot <- plot |> plotly::add_boxplot(
data = ranking[gene %chin% gene_set],
x = gene_set_name,
y = ~score,
2022-03-01 15:49:04 +01:00
name = gene_set_name,
showlegend = FALSE,
line = list(color = gene_set_color(index))
2021-12-02 17:23:18 +01:00
)
2022-03-01 15:49:04 +01:00
index <- index + 1
2021-12-02 17:23:18 +01:00
}
2021-11-06 13:03:36 +01:00
}
2021-12-02 17:23:18 +01:00
plot
2021-11-06 13:03:36 +01:00
}
2021-11-22 14:10:08 +01:00
#' Show the distribution of scores across chromosomes.
#'
#' This function requires the package `plotly`.
#'
#' @param ranking The ranking to visualize.
#'
#' @seealso ranking()
#'
#' @export
plot_chromosomes <- function(ranking) {
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
data <- merge(ranking, geposan::genes, by.x = "gene", by.y = "id")
data <- data[, .(score = mean(score)), by = "chromosome"]
# Get an orderable integer from a chromosome name.
chromosome_index <- function(chromosome) {
index <- suppressWarnings(as.integer(chromosome))
ifelse(
!is.na(index),
index,
ifelse(
chromosome == "X",
998,
999
)
)
}
data[, index := chromosome_index(chromosome)]
setorder(data, "index")
plotly::plot_ly(
data = data,
x = ~chromosome,
y = ~score,
2022-03-01 15:49:04 +01:00
type = "bar",
marker = list(color = base_color())
2021-11-22 14:10:08 +01:00
) |>
plotly::layout(
xaxis = list(
title = "Chromosome",
categoryorder = "array",
categoryarray = ~chromosome
),
yaxis = list(title = "Mean score")
)
}
2022-05-17 21:48:30 +02:00
#' Plot scores in relation to chromosomal position of genes.
#'
#' @param ranking The ranking to visualize.
#' @param chromosome_name The chromosome to visualize.
#' @param gene_sets Named list of vectors of genes to highlight. The list names
#' will be used as labels.
2022-05-17 21:48:30 +02:00
#'
#' @return A `plotly` figure.
#' @seealso ranking()
#'
#' @export
plot_scores_by_position <- function(ranking,
chromosome_name,
gene_sets = NULL) {
2022-05-17 21:48:30 +02:00
if (!requireNamespace("plotly", quietly = TRUE)) {
stop("Please install \"plotly\" to use this function.")
}
chromosome_name_ <- chromosome_name
data <- merge(
ranking,
geposan::distances[
species == "hsapiens" &
chromosome_name == chromosome_name_
],
by = "gene"
)
data[, `:=`(gene_set = "All genes", color = base_color())]
index <- 1
for (gene_set_name in names(gene_sets)) {
gene_set_genes <- gene_sets[[gene_set_name]]
data[
gene %chin% gene_set_genes,
`:=`(
gene_set = gene_set_name,
color = gene_set_color(index)
)
]
index <- index + 1
}
2022-05-17 21:48:30 +02:00
plotly::plot_ly() |>
plotly::add_markers(
data = data,
x = ~start_position,
y = ~score,
name = ~gene_set,
2022-05-17 21:48:30 +02:00
hoverinfo = "skip"
) |>
plotly::layout(
xaxis = list(title = "Position (Bp)"),
yaxis = list(title = "Score")
)
}