2021-12-16 13:01:44 +01:00
|
|
|
#' Find genes by training and applying a neural network.
|
|
|
|
|
#'
|
|
|
|
|
#' @param seed The seed will be used to make the results reproducible.
|
|
|
|
|
#' @param n_models This number specifies how many sets of training data should
|
|
|
|
|
#' be created. For each set, there will be a model trained on the remaining
|
|
|
|
|
#' training data and validated using this set. For non-training genes, the
|
|
|
|
|
#' final score will be the mean of the result of applying the different
|
|
|
|
|
#' models. There should be at least two training sets. The analysis will only
|
|
|
|
|
#' work, if there is at least one reference gene per training set.
|
|
|
|
|
#'
|
|
|
|
|
#' @return An object of class `geposan_method`.
|
|
|
|
|
#'
|
|
|
|
|
#' @export
|
|
|
|
|
neural <- function(seed = 180199, n_models = 5) {
|
2022-05-26 12:42:19 +02:00
|
|
|
method(
|
|
|
|
|
id = "neural",
|
|
|
|
|
name = "Neural",
|
|
|
|
|
description = "Assessment by neural network",
|
|
|
|
|
function(preset, progress) {
|
|
|
|
|
species_ids <- preset$species_ids
|
|
|
|
|
gene_ids <- preset$gene_ids
|
|
|
|
|
reference_gene_ids <- preset$reference_gene_ids
|
|
|
|
|
|
|
|
|
|
cached(
|
|
|
|
|
"neural",
|
|
|
|
|
c(species_ids, gene_ids, reference_gene_ids, seed, n_models),
|
|
|
|
|
{ # nolint
|
|
|
|
|
reference_count <- length(reference_gene_ids)
|
|
|
|
|
stopifnot(n_models %in% 2:reference_count)
|
|
|
|
|
|
|
|
|
|
# Make results reproducible.
|
|
|
|
|
tensorflow::set_random_seed(seed)
|
|
|
|
|
|
|
|
|
|
# Step 1: Prepare input data.
|
|
|
|
|
# ---------------------------
|
|
|
|
|
|
|
|
|
|
# Prefilter distances by species.
|
|
|
|
|
distances <- geposan::distances[species %chin% species_ids]
|
|
|
|
|
|
|
|
|
|
# Input data for the network. This contains the gene ID as
|
|
|
|
|
# an identifier as well as the per-species gene distances as
|
|
|
|
|
# input variables.
|
|
|
|
|
data <- data.table(gene = gene_ids)
|
|
|
|
|
|
|
|
|
|
# Buffer to keep track of the names of the input variables.
|
|
|
|
|
input_vars <- NULL
|
|
|
|
|
|
|
|
|
|
# Make a columns containing positions and distances for each
|
|
|
|
|
# species.
|
|
|
|
|
for (species_id in species_ids) {
|
|
|
|
|
species_data <- distances[
|
|
|
|
|
species == species_id,
|
|
|
|
|
.(gene, distance)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# Only include species with at least 25% known values.
|
|
|
|
|
# As positions and distances always coexist, we don't
|
|
|
|
|
# loose any data here.
|
|
|
|
|
|
|
|
|
|
species_data <- stats::na.omit(species_data)
|
|
|
|
|
|
|
|
|
|
if (nrow(species_data) >= 0.25 * length(gene_ids)) {
|
|
|
|
|
data <- merge(data, species_data, all.x = TRUE)
|
|
|
|
|
|
|
|
|
|
# Replace missing data with mean values. The neural
|
|
|
|
|
# network can't handle NAs in a meaningful way.
|
|
|
|
|
# Choosing extreme values here would result in
|
|
|
|
|
# heavily biased results. Therefore, the mean value
|
|
|
|
|
# is chosen as a compromise. However, this will of
|
|
|
|
|
# course lessen the significance of the results.
|
|
|
|
|
|
|
|
|
|
mean_distance <- round(
|
|
|
|
|
species_data[, mean(distance)]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
data[is.na(distance), distance := mean_distance]
|
|
|
|
|
|
|
|
|
|
# Name the new column after the species.
|
|
|
|
|
setnames(data, "distance", species_id)
|
|
|
|
|
|
|
|
|
|
# Add the input variable to the buffer.
|
|
|
|
|
input_vars <- c(input_vars, species_id)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
progress(0.1)
|
|
|
|
|
|
|
|
|
|
# Step 2: Prepare training data.
|
|
|
|
|
# ------------------------------
|
|
|
|
|
|
|
|
|
|
# Take out the reference data.
|
|
|
|
|
|
|
|
|
|
reference_data <- data[gene %chin% reference_gene_ids]
|
|
|
|
|
reference_data[, score := 1.0]
|
|
|
|
|
|
|
|
|
|
# Take out random samples from the remaining genes. This is
|
|
|
|
|
# another compromise with a negative impact on
|
|
|
|
|
# significance. We assume that a random gene is not likely
|
|
|
|
|
# to match the reference genes.
|
|
|
|
|
|
|
|
|
|
without_reference_data <- data[
|
|
|
|
|
!gene %chin% reference_gene_ids
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
control_data <- without_reference_data[
|
|
|
|
|
sample(
|
|
|
|
|
nrow(without_reference_data),
|
|
|
|
|
reference_count
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
control_data[, score := 0.0]
|
|
|
|
|
|
|
|
|
|
# Split the training data into random sets to have
|
|
|
|
|
# validation data for each model.
|
|
|
|
|
|
|
|
|
|
# Scramble the source tables.
|
|
|
|
|
reference_data <- reference_data[sample(reference_count)]
|
|
|
|
|
control_data <- control_data[sample(reference_count)]
|
|
|
|
|
|
|
|
|
|
networks <- list()
|
|
|
|
|
|
|
|
|
|
indices <- seq_len(reference_count)
|
|
|
|
|
indices_split <- split(indices, indices %% n_models)
|
|
|
|
|
|
|
|
|
|
for (i in seq_len(n_models)) {
|
|
|
|
|
training_data <- rbindlist(list(
|
|
|
|
|
reference_data[!indices_split[[i]]],
|
|
|
|
|
control_data[!indices_split[[i]]]
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
validation_data <- rbindlist(list(
|
|
|
|
|
reference_data[indices_split[[i]]],
|
|
|
|
|
control_data[indices_split[[i]]]
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
networks[[i]] <- list(
|
|
|
|
|
training_data = training_data,
|
|
|
|
|
validation_data = validation_data
|
|
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Step 3: Create, train and apply neural network.
|
|
|
|
|
# -----------------------------------------------
|
|
|
|
|
|
|
|
|
|
# Layers for the neural network.
|
|
|
|
|
input_layer <- length(input_vars)
|
|
|
|
|
layer1 <- input_layer
|
|
|
|
|
layer2 <- 0.5 * input_layer
|
|
|
|
|
layer3 <- 0.5 * layer2
|
|
|
|
|
|
|
|
|
|
# Convert data to matrix and normalize it.
|
|
|
|
|
to_matrix <- function(data) {
|
|
|
|
|
data_matrix <- as.matrix(data[, ..input_vars])
|
|
|
|
|
colnames(data_matrix) <- NULL
|
|
|
|
|
keras::normalize(data_matrix)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
data_matrix <- to_matrix(data)
|
|
|
|
|
output_vars <- NULL
|
|
|
|
|
|
|
|
|
|
for (i in seq_along(networks)) {
|
|
|
|
|
# Create a new model for each training session, because
|
|
|
|
|
# the model would keep its state across training
|
|
|
|
|
# sessions otherwise.
|
|
|
|
|
model <- keras::keras_model_sequential() |>
|
|
|
|
|
keras::layer_dense(
|
|
|
|
|
units = layer1,
|
|
|
|
|
activation = "relu",
|
|
|
|
|
input_shape = input_layer,
|
|
|
|
|
) |>
|
|
|
|
|
keras::layer_dense(
|
|
|
|
|
units = layer2,
|
|
|
|
|
activation = "relu",
|
|
|
|
|
kernel_regularizer = keras::regularizer_l2()
|
|
|
|
|
) |>
|
|
|
|
|
keras::layer_dense(
|
|
|
|
|
units = layer3,
|
|
|
|
|
activation = "relu",
|
|
|
|
|
kernel_regularizer = keras::regularizer_l2()
|
|
|
|
|
) |>
|
|
|
|
|
keras::layer_dense(
|
|
|
|
|
units = 1,
|
|
|
|
|
activation = "sigmoid"
|
|
|
|
|
) |>
|
|
|
|
|
keras::compile(
|
|
|
|
|
loss = keras::loss_mean_absolute_error(),
|
|
|
|
|
optimizer = keras::optimizer_adam()
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Train the model.
|
|
|
|
|
|
|
|
|
|
network <- networks[[i]]
|
|
|
|
|
|
|
|
|
|
training_data <- network$training_data
|
|
|
|
|
training_matrix <- to_matrix(training_data)
|
|
|
|
|
validation_data <- network$validation_data
|
|
|
|
|
validation_matrix <- to_matrix(validation_data)
|
|
|
|
|
|
|
|
|
|
fit <- keras::fit(
|
|
|
|
|
model,
|
|
|
|
|
x = training_matrix,
|
|
|
|
|
y = training_data$score,
|
|
|
|
|
validation_data = list(
|
|
|
|
|
x_val = validation_matrix,
|
|
|
|
|
y_val = validation_data$score
|
|
|
|
|
),
|
|
|
|
|
epochs = 500,
|
|
|
|
|
verbose = FALSE
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Apply the model.
|
|
|
|
|
|
|
|
|
|
data[, new_score := stats::predict(model, data_matrix)]
|
|
|
|
|
|
|
|
|
|
# Remove the values of the training data itself.
|
|
|
|
|
data[gene %chin% training_data$gene, new_score := NA]
|
|
|
|
|
|
|
|
|
|
output_var <- sprintf("score%i", i)
|
|
|
|
|
setnames(data, "new_score", output_var)
|
|
|
|
|
output_vars <- c(output_vars, output_var)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Store the details.
|
|
|
|
|
|
|
|
|
|
networks[[i]]$model <- keras::serialize_model(model)
|
|
|
|
|
networks[[i]]$fit <- fit
|
|
|
|
|
|
|
|
|
|
progress(0.1 + i * (0.9 / n_models))
|
|
|
|
|
}
|
2021-12-16 13:01:44 +01:00
|
|
|
|
2022-05-26 12:42:19 +02:00
|
|
|
# Compute the final score as the mean score.
|
|
|
|
|
data[,
|
|
|
|
|
score := mean(as.numeric(.SD), na.rm = TRUE),
|
|
|
|
|
.SDcols = output_vars,
|
|
|
|
|
by = gene
|
|
|
|
|
]
|
2021-12-16 13:01:44 +01:00
|
|
|
|
2022-05-26 12:42:19 +02:00
|
|
|
progress(1.0)
|
2021-12-16 13:01:44 +01:00
|
|
|
|
2022-05-26 12:42:19 +02:00
|
|
|
result(
|
|
|
|
|
method = "neural",
|
|
|
|
|
scores = data[, .(gene, score)],
|
|
|
|
|
details = list(
|
|
|
|
|
seed = seed,
|
|
|
|
|
n_models = n_models,
|
|
|
|
|
all_results = data[, !..input_vars],
|
|
|
|
|
networks = networks
|
2021-11-23 16:26:04 +01:00
|
|
|
)
|
2022-05-26 12:42:19 +02:00
|
|
|
)
|
2021-11-23 16:26:04 +01:00
|
|
|
}
|
2022-05-26 12:42:19 +02:00
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
)
|
2021-10-19 13:39:55 +02:00
|
|
|
}
|