2022-01-09 21:32:37 +01:00
|
|
|
#' Score genes based on their correlation with the reference genes.
|
2021-12-16 13:01:44 +01:00
|
|
|
#'
|
2022-02-24 14:34:18 +01:00
|
|
|
#' @param summarize A function for combining the different correlation
|
|
|
|
|
#' coefficients into one metric. By default, [stats::median()] is used. Other
|
|
|
|
|
#' suggested options include [max()] and [mean()].
|
|
|
|
|
#'
|
2021-12-16 13:01:44 +01:00
|
|
|
#' @return An object of class `geposan_method`.
|
|
|
|
|
#'
|
|
|
|
|
#' @export
|
2022-02-24 14:34:18 +01:00
|
|
|
correlation <- function(summarize = stats::median) {
|
2022-05-26 12:42:19 +02:00
|
|
|
method(
|
|
|
|
|
id = "correlation",
|
|
|
|
|
name = "Correlation",
|
|
|
|
|
description = "Correlation with reference genes",
|
|
|
|
|
function(preset, progress) {
|
|
|
|
|
species_ids <- preset$species_ids
|
|
|
|
|
gene_ids <- preset$gene_ids
|
|
|
|
|
reference_gene_ids <- preset$reference_gene_ids
|
|
|
|
|
|
|
|
|
|
cached(
|
|
|
|
|
"correlation",
|
|
|
|
|
c(species_ids, gene_ids, reference_gene_ids, summarize),
|
|
|
|
|
{ # nolint
|
|
|
|
|
# Prefilter distances by species.
|
|
|
|
|
distances <- geposan::distances[species %chin% species_ids]
|
|
|
|
|
|
|
|
|
|
# Tranform data to get species as rows and genes as columns.
|
|
|
|
|
# We construct columns per species, because it requires
|
|
|
|
|
# fewer iterations, and transpose the table afterwards.
|
|
|
|
|
|
|
|
|
|
data <- data.table(gene = gene_ids)
|
|
|
|
|
|
|
|
|
|
# Make a column containing distance data for each species.
|
|
|
|
|
for (species_id in species_ids) {
|
|
|
|
|
species_data <- distances[
|
|
|
|
|
species == species_id,
|
|
|
|
|
.(gene, distance)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
data <- merge(data, species_data, all.x = TRUE)
|
|
|
|
|
setnames(data, "distance", species_id)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Transpose to the desired format.
|
|
|
|
|
data <- transpose(data, make.names = "gene")
|
|
|
|
|
|
|
|
|
|
progress(0.33)
|
|
|
|
|
|
|
|
|
|
# Take the reference data.
|
|
|
|
|
reference_data <- data[, ..reference_gene_ids]
|
|
|
|
|
|
|
|
|
|
# Perform the correlation between all possible pairs.
|
|
|
|
|
results <- stats::cor(
|
|
|
|
|
data[, ..gene_ids],
|
|
|
|
|
reference_data,
|
|
|
|
|
use = "pairwise.complete.obs",
|
|
|
|
|
method = "spearman"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
results <- data.table(results, keep.rownames = TRUE)
|
|
|
|
|
setnames(results, "rn", "gene")
|
|
|
|
|
|
|
|
|
|
# Remove correlations between the reference genes
|
|
|
|
|
# themselves.
|
|
|
|
|
for (reference_gene_id in reference_gene_ids) {
|
|
|
|
|
column <- quote(reference_gene_id)
|
|
|
|
|
results[gene == reference_gene_id, eval(column) := NA]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
progress(0.66)
|
|
|
|
|
|
|
|
|
|
# Combine the correlation coefficients.
|
|
|
|
|
results[,
|
|
|
|
|
max_correlation := as.double(summarize(stats::na.omit(
|
|
|
|
|
# Convert the data.table subset into a
|
|
|
|
|
# vector to get the correct na.omit
|
|
|
|
|
# behavior.
|
|
|
|
|
as.matrix(.SD)[1, ]
|
|
|
|
|
))),
|
|
|
|
|
.SDcols = reference_gene_ids,
|
|
|
|
|
by = gene
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# Normalize scores.
|
|
|
|
|
results[
|
|
|
|
|
,
|
|
|
|
|
score := (max_correlation - min(max_correlation)) /
|
|
|
|
|
(max(max_correlation) - min(max_correlation))
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# Normalize scores.
|
|
|
|
|
|
|
|
|
|
results[, .(gene, score)]
|
|
|
|
|
|
|
|
|
|
result(
|
|
|
|
|
method = "correlation",
|
|
|
|
|
scores = results[, .(gene, score)],
|
|
|
|
|
details = list(all_correlations = results)
|
|
|
|
|
)
|
2021-11-05 19:49:54 +01:00
|
|
|
}
|
2022-05-26 12:42:19 +02:00
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
)
|
2021-10-19 13:39:55 +02:00
|
|
|
}
|